Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T19:51:52.644Z Has data issue: false hasContentIssue false

Nuclear Fréchet lattices

Published online by Cambridge University Press:  01 August 2017

Antonio Fernández
Affiliation:
Dpto. Matemática Aplicada II, Escuela Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092-Sevilla, Spain e-mail: [email protected]
Francisco Naranjo
Affiliation:
Dpto. Matemática Aplicada II, Escuela Universitaria Politécnica, c/ Virgen de África, 7 41011-Sevilla, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a characterization of nuclear Fréchet lattices in terms of lattice properties of the seminorms. Indeed, we prove that a Fréchet lattice is nuclear if and only if it is both an AL- and an AM-space.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1] Aliprantis, C. D. and Burkinshaw, O., Locally solid Riesz spaces, Pure and Appl. Math. 76 (Academic Press, Orlando, Florida, 1978).Google Scholar
[2] Aliprantis, C. D. and Burkinshaw, O., Positive operators, Pure and Appl. Math. 119 (Academic Press, Orlando, Florida, 1985).Google Scholar
[3] Ando, T., ‘Banachverbände und positive Projektionen’, Math. Z. 109 (1969), 121130.Google Scholar
[4] Grosse-Erdmann, K. G., ‘Lebesgue's theorem of differentiation in Fréchet lattices’, Proc. Amer. Math. Soc. 112 (1991), 371379.Google Scholar
[5] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (Amer. Math. Soc., Providence, RI, 1955).Google Scholar
[6] Kakutani, S., ‘Concrete representation of abstract (L)-spaces and the mean ergodic theorem’, Ann. of Math. (2) 42 (1941), 523537.CrossRefGoogle Scholar
[7] Kakutani, S., ‘Concrete representation of abstract (M)-spaces’, Ann. of Math. (2) 42 (1941), 9941024.Google Scholar
[8] Kōmura, Y. and Koshi, S., ‘Nuclear vector lattices’, Math. Ann. 163 (1966), 105110.Google Scholar
[9] Luxemburg, W. A. and Zaanen, A. C., Riesz spaces I (North-Holland, Amsterdam, 1971).Google Scholar
[10] Meise, R. and Vogt, D., Introduction to functional analysis, Oxford Graduate Texts in Math. 2 (Clarendon Press, Oxford, 1997).CrossRefGoogle Scholar
[11] Pietsch, A., Nuclear locally convex spaces, Ergebnisse der Math, und ihrer Grenzgebiete 66 (Springer, Berlin, 1972).Google Scholar
[12] Popa, M. N., ‘Un critére de nucléarité pour des treillis’, C. R. Acad. Sc. Paris Sen A-B 269 (1969), 355356.Google Scholar
[13] Wong, Y. C., ‘Characterizations of the topology of uniform convergence on order-intervals’, Hokkaido Math. J. 5 (1976), 164200.Google Scholar
[14] Wong, Y. C., Schwartz spaces, nuclear spaces and tensor products, Lecture Notes in Math. 726 (Springer, Berlin, 1979).Google Scholar
[15] Wong, Y. C. and Ng, F. K., ‘Nuclear and AL-spaces’, Southeast Asian Bull. Math. J. 5 (1981), 4558.Google Scholar