Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T12:40:50.819Z Has data issue: false hasContentIssue false

Multiplicative isogeny estimates

Published online by Cambridge University Press:  09 April 2009

David Masser
Affiliation:
Mathematisches Institut Universität BaselRheinsprung 21 4051 BaselSwitzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theory of isogeny estimates for Abelian varieties provides ‘additive bounds’ of the form ‘d is at most B’ for the degrees d of certain isogenies. We investigate whether these can be improved to ‘multiplicative bounds’ of the form ‘d divides B’. We find that in general the answer is no (Theorem 1), but that sometimes the answer is yes (Theorem 2). Further we apply the affirmative result to the study of exceptional primes ℒ in connexion with modular Galois representations coming from elliptic curves: we prove that the additive bounds for ℒ of Masser and Wüstholz (1993) can be improved to multiplicative bounds (Theorem 3).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[C]Cohen, P., ‘On the coefficients of the transformation polynomials for the elliptic modular function’, Math. Proc. Cambridge Philos. Soc. 95 (1984), 389402.CrossRefGoogle Scholar
[F]Faltings, G., ‘Endlichkeitssätze für Abelsche Varietäten über Zahlkörpem’, Invent. Math. 73 (1983), 349366,CrossRefGoogle Scholar
and ‘Endlichkeitssätze für Abelsche Varietäten über Zahlkörpem’, Invent. Math.. 75 (1984), 381.CrossRefGoogle Scholar
[HW]Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers (Oxford Univ. Press, Oxford, 1960).Google Scholar
[L]Lang, S., Algebraic number theory (Addison-Wesley, Reading, 1970).Google Scholar
[MW1]Masser, D. W. and Wüstholz, G., ‘Galois properties of division fields of elliptic curves’, Bull. London Math. Soc. 25 (1993), 247254.CrossRefGoogle Scholar
[MW2]Masser, D. W. and Wüstholz, G., ‘Refinements of the Tate conjecture for Abelian varieties’, in: Abelian varieties (eds. Barth, W., Hulek, K. and Lange, H.) (de Gruyter, Berlin, 1995) pp. 211223.Google Scholar
[MW3]Masser, D. W. and Wüstholz, G., ‘Factorization estimates for Abelian varieties’, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 524.CrossRefGoogle Scholar
[N]Nair, M., ‘On Chebyshev-type inequalities for primes’, Amer. Math. Monthly 89 (1982), 126129.CrossRefGoogle Scholar
[RS]Rosser, J. B. and Schoenfeld, L., ‘Approximate formulas for some functions of prime numbers’, Illinois J. Math. 6 (1962), 6494.CrossRefGoogle Scholar
[Se1]Serre, J.-P., Abelian ℒ-adic representations and elliptic curves (Benjamin, New York, 1968).Google Scholar
[Se2]Serre, J.-P., ‘Propriétés galoisiennes des points d'ordre fini des courbes elliptiques’, Invent. Math. 15 (1972), 259331.CrossRefGoogle Scholar
[Se3]Serre, J.-P., ‘Quelques applications du théorème de densité de Chebotarev’, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 123201.CrossRefGoogle Scholar
[Si1]Silverman, J. H., ‘Heights and elliptic curves’, in: Arithmetic geometry (eds. Cornell, G. and Silverman, J. H.) (Springer, Berlin, 1986) pp. 253265.CrossRefGoogle Scholar
[Si2]Silverman, J. H., Advanced topics in the arithmetic of elliptic curves (Springer, Berlin, 1994).CrossRefGoogle Scholar
[W]Waldschmidt, M., ‘Nombres transcendants et groupes algébriques’, in: Astérisque 6970 (Soc. Math. France, Paris, 1987).Google Scholar