Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T02:24:09.355Z Has data issue: false hasContentIssue false

LOCALLY COMPACT WREATH PRODUCTS

Published online by Cambridge University Press:  15 August 2018

YVES CORNULIER*
Affiliation:
CNRS and Univ Lyon, Univ Claude Bernard Lyon 1, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne, France email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wreath products of nondiscrete locally compact groups are usually not locally compact groups, nor even topological groups. As a substitute introduce a natural extension of the wreath product construction to the setting of locally compact groups. Applying this construction, we disprove a conjecture of Trofimov, constructing compactly generated locally compact groups of intermediate growth without any open compact normal subgroup.

Type
Research Article
Copyright
© 2018 Australian Mathematical Publishing Association Inc. 

Footnotes

The author was supported by ANR 12-BS01-0003-01 GDSous.

References

Akemann, C. A. and Walter, M. E., ‘Unbounded negative definite functions’, Canad. J. Math. 33(4) (1981), 862871.Google Scholar
Bader, U., Caprace, P.-E., Gelander, T. and Mozes, S., ‘Lattices in amenable groups’, Preprint 2016, arXiv:1612.06220.Google Scholar
Bartholdi, L. and Erschler, A., ‘Growth of permutational extensions’, Invent. Math. 189(2) (2012), 431455.Google Scholar
Belyaev, V., ‘Locally finite groups containing a finite inseparable subgroup (Russian)’, Sibirsk. Mat. Zh. 34(2) (1993), 2341; English translation in Siberian Math. J. 34(2) (1993), 218–232.Google Scholar
Bhattacharjee, M. and MacPherson, D., ‘Strange permutation representations of free groups’, J. Austral. Math. Soc. 74(2) (2003), 267286.Google Scholar
Bieri, R., Cornulier, Y., Guyot, L. and Strebel, R., ‘Infinite presentability of groups and condensation’, J. Inst. Math. Jussieu 13(4) (2014), 811848.Google Scholar
Bourbaki, N., Éléments de mathématique. Groupes et algèbres de Lie. Chapitres 4 à 6 (Hermann, Paris, 1968).Google Scholar
Caprace, P.-E., ‘Non-discrete simple locally compact groups’, in: Proceedings of the 7th European Congress of Mathematics (2016), to appear.Google Scholar
Caprace, P.-E. and Cornulier, Y., ‘On embeddings into compactly generated groups’, Pacific J. Math. 269(2) (2014), 305321.Google Scholar
Caprace, P.-E. and Monod, N., ‘Decomposing locally compact groups into simple pieces’, Math. Proc. Cambridge Philos. Soc. 150(1) (2011), 97128.Google Scholar
Caprace, P.-E. and Monod, N., ‘Future directions in locally compact groups’, in: New Directions in Locally Compact Groups (Cambridge University Press, Cambridge, 2018), 343355.Google Scholar
Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P. and Valette, A., Groups with the Haagerup Property: Gromov’s a-T-menability, Progress in Mathematics, 197 (Birkhäuser, Basel, 2001).Google Scholar
Cornulier, Y., ‘Finitely presented wreath products and double coset decompositions’, Geom. Dedicata 122(1) (2006), 89108.Google Scholar
Cornulier, Y., ‘Commability and focal locally compact groups’, Indiana Univ. Math. J. 64(1) (2015), 115150.Google Scholar
Cornulier, Y., ‘Group actions with commensurated subsets, wallings and cubings’, Preprint, 2016, arXiv:1302.5982v2.Google Scholar
Cornulier, Y. and de la Harpe, P., Metric Geometry of Locally Compact Groups, EMS Tracts in Mathematics, 25 (European Mathematical Society, Zurich, 2016).Google Scholar
Cornulier, Y., Stalder, Y. and Valette, A., ‘Proper actions of lamplighter groups associated with free groups’, C. R. Math. 346(3–4) (2008), 173176.Google Scholar
Cornulier, Y., Stalder, Y. and Valette, A., ‘Proper actions of wreath products and generalizations’, Trans. Amer. Math. Soc. 364(6) (2012), 31593184.Google Scholar
Cornulier, Y. and Tessera, R., ‘A characterization of relative Kazhdan property T for semidirect products with abelian groups’, Ergodic Theory Dynam. Systems 31(3) (2011), 793805.Google Scholar
Dixon, J., Du Sautoy, M. P. F., Mann, A. and Segal, D, Analytic Pro-p Groups, 2nd edn (Cambridge University Press, Cambridge).Google Scholar
Durbin, J., ‘On locally compact wreath products’, Pacific J. Math. 57(1) (1975), 99107.Google Scholar
Eisenmann, A. and Monod, N., ‘Normal generation of locally compact groups’, Bull. Lond. Math. Soc. 45(4) (2013), 734738.Google Scholar
Gheysens, M. and Monod, N., ‘Fixed points for bounded orbits in hilbert spaces’, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), 131156.Google Scholar
Kepert, A. and Willis, G., ‘Scale functions and tree ends’, J. Austral. Math. Soc. 70(2) (2001), 273292.Google Scholar
Klopsch, B., ‘Abstract quotients of profinite groups, after Nikolov and Segal’, in: New Directions in Locally Compact Groups (Cambridge University Press, Cambridge, 2018), 7391.Google Scholar
Krasner, M. and Kaloujnine, L., ‘Produit complet des groupes de permutations et problème d’extension de groupes. III’, Acta Sci. Math. (Szeged) 14 (1951), 6982.Google Scholar
Le Boudec, A., ‘Groups acting on trees with almost prescribed local action’, Comment. Math. Helv. 91(2) (2016), 253293.Google Scholar
Le Boudec, A., ‘Amenable uniformly recurrent subgroups and lattice embeddings’, Preprint, 2018, arXiv:1802.04736.Google Scholar
Losert, V., ‘On the structure of groups with polynomial growth’, Math. Z. 195(1) (1987), 109117.Google Scholar
Maltsev, A., Algebraicheskie Sistemy (Russian), posthumous edn (eds. Smirnov, D. and Taiclin Izdat, M.) (Nauka, Moscow, 1970); English translation in Algebraic Systems, Die Grundlehren der mathematischen Wissenschaften, 192 (Springer, New York, 1973).Google Scholar
Neumann, B., ‘Some remarks on infinite groups’, J. Lond. Math. Soc. (2) 1(2) (1937), 120127.Google Scholar
Reid, C. D. and Wesolek, P. R., ‘Homomorphisms into totally disconnected, locally compact groups with dense image’, Preprint, 2015, arXiv:1509.00156.Google Scholar
Remeslennikov, V., ‘Imbedding theorems for profinite groups (Russian)’, Izv. Akad. Nauk. SSSR 43(2) (1979), 399417; English translation in Math. USSR-Izv. 14 (2) (1980), 367–382.Google Scholar
Robertson, G. and Steger, T., ‘Negative definite kernels and a dynamical characterization of property (T) for countable groups’, Ergodic Theory Dynam. Systems 18(1) (1998), 247253.Google Scholar
Stëpin, A. M., ‘Approximability of groups and group actions’, Uspekhi Mat. Nauk 38(6) (1983), 123124; English translation in Russian Math. Surveys 38(6) (1983), 131–132.Google Scholar
Trofimov, V., ‘Graphs with polynomial growth’, Mat. Sb. Math. 123(165) (1984), 407421; English translation: Math. USSR Sb. 51, 1985, 405–417.Google Scholar
Trofimov, V., ‘Growth functions of permutation groups’, Trudy Inst. Mat. (Proc. Inst. Math.) 4 (1984), 118138.Google Scholar
Trofimov, V., ‘Vertex stabilizers of graphs and tracks, I’, Eur. J. Combin. 28(2) (2007), 613640.Google Scholar
Wesolek, P., ‘Elementary totally disconnected locally compact groups’, Proc. Lond. Math. Soc. 110(6) (2015), 13871434.Google Scholar
Wu, T. S. and Yu, Y. K., ‘Compactness properties of topological groups’, Michigan Math. J. 19(4) (1972), 299313.Google Scholar