Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T13:29:05.770Z Has data issue: false hasContentIssue false

Lacunarity on nonabelian groups and summing operators

Published online by Cambridge University Press:  09 April 2009

P. G. Dodds
Affiliation:
1/242 Sir Fred Schonell Drive St. Lucia QLD 4067Australia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note we investigate lacunarity or ‘thin’ subsets in the dual object of a compact group via different classes of summing operators between Banach spaces. In particular, we give characterisations of Sidon and ∧ (p) sets, 2 < p < ∞

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Baur, F., Banach operator ideals generated by orthonormal systems (Ph.D. Thesis, Universität Zürich, 1997).Google Scholar
[2]Baur, F., ‘∧(2)-systems and summing operators’, Arch. Math. 71 (1998), 465471.CrossRefGoogle Scholar
[3]Baur, F., ‘Operator ideals, orthonormal systems and lacunary sets’, Math. Nachr. 197 (1999), 1928.CrossRefGoogle Scholar
[4]Defant, A. and Floret, K., Tensor norms and operator ideals (North-Holland, Amsterdam, 1993).Google Scholar
[5]Diestel, J., Jarchow, H. and Tonge, A., Absolutely summing operators (Cambridge Univ. Press, Cambridge, 1995).CrossRefGoogle Scholar
[6]Linde, W. and Pietsch, A., ‘Mappings of Gaussian cylindrical measures in Banach spaces’, Theory Probab. Appl. 19 (1974), 445460.CrossRefGoogle Scholar
[7]Marcus, M. B. and Pisier, G., Random Fourier series with application to harmonic analysis, Ann. of Math. Studies 101 (Princeton Univ. Press, Princeton, 1981).Google Scholar
[8]Pietsch, A., Operator ideals (North-Holland, Amsterdam, 1980).Google Scholar
[9]Pisier, G., ‘Lesinégalités de Khinchine-Kahane d'après C. Borell’, in: Séminaire sur la Géométrie des Espaces de Banach 1977–1978, Exposé No VII (eds. Maurey, B. and Schwartz, L.) (Ecole Polytechnique, Centre de Mathématiques, 1978), pp. VII 1–VII 14.Google Scholar
[10]Price, J. F., ‘Non ci sono insiemi infiniti di dipo ∧(p) per SU (2)’, Boll. Un. Mat. Ital. 4 (1971), 879881.Google Scholar
[11]Rider, D., ‘Central lacunary sets’, Monatsh. Math. 76 (1972), 328338.CrossRefGoogle Scholar
[12]Rider, D., Norms of character and central ∧p sets for U(n), Lecture Notes in Math. 266 (Springer, Berlin, 1972).Google Scholar
[13]Rider, D., ‘Randomly continuous functions and Sidon sets’, Duke Math. J. 42 (1975), 759764.CrossRefGoogle Scholar
[14]Rider, D., ‘SU(n) has no infinite local ∧p sets’, Boll. Un. Mat. Ital. 12 (1975), 155160.Google Scholar
[15]Seigner, J., Über eine Klasse von Idealnormen, die mit Orthonormalsystemen gebildet sind (Ph.D. Thesis, Friedrich-Schiller-Universität, Jena, 1995).Google Scholar
[16]Vrem, R. C., ‘Lacunarity on compact hypergroups’, Math. Z. 164 (1978), 93104.CrossRefGoogle Scholar
[17]Vrem, R. C., ‘Independent sets and lacunarity for hypergroups’, J. Austral. Math. Soc. (Series A) 50 (1991), 171188.CrossRefGoogle Scholar