Published online by Cambridge University Press: 09 April 2009
We first define an inscribed center of a bounded convex body in a normed linear space as the center of a largest open ball contained in it (when such a ball exists). We then show that completeness is a necessary condition for a normed linear space to admit inscribed centers. We show that every weakly compact convex body in a Banach space has at least one inscribed center, and that admitting inscribed centers is a necessary and sufficient condition for reflexivity. We finally apply the concept of inscribed center to prove a type of fixed point theorem and also deduce a proposition concerning so-called Klee caverns in Hilbert spaces.