Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T09:16:43.419Z Has data issue: false hasContentIssue false

GROUP ALGEBRAS WHOSE UNIT GROUP IS LOCALLY NILPOTENT

Published online by Cambridge University Press:  07 May 2020

V. BOVDI*
Affiliation:
UAEU, Math Sciences, COS, P.O. Box 15551, Al Ain, United Arab Emirates email [email protected]

Abstract

We present a complete list of groups $G$ and fields $F$ for which: (i) the group of normalized units $V(FG)$ of the group algebra $FG$ is locally nilpotent; (ii) the set of nontrivial nilpotent elements of $FG$ is finite and nonempty, and $V(FG)$ is an Engel group.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the UAEU UPAR Grant G00002160.

References

Baer, R., ‘Engelsche elemente Noetherscher Gruppen’, Math. Ann. 133 (1957), 256270.CrossRefGoogle Scholar
Bovdi, A. A., Group Rings (UMK VO, Kiev, 1988), 155 (in Russian).Google Scholar
Bovdi, A., ‘The group of units of a group algebra of characteristic p’, Publ. Math. Debrecen 52(1–2) (1998), 193244.Google Scholar
Bovdi, A., ‘Group algebras with a solvable group of units’, Comm. Algebra 33(10) (2005), 37253738.CrossRefGoogle Scholar
Bovdi, A., ‘Group algebras with an Engel group of units’, J. Aust. Math. Soc. 80(2) (2006), 173178.CrossRefGoogle Scholar
Bovdi, A. and Khripta, I., ‘Generalized Lie nilpotent group rings’, Mat. Sb. (N.S.) 129(171)(1) (1986), 154158, 160.Google Scholar
Bovdi, A. and Khripta, I., ‘Generalized nilpotence of the multiplicative group of a group ring’, Ukraïn. Mat. Zh. 41(9) (1989), 11791183, 1293.Google Scholar
Bovdi, A. A. and Khripta, I. I., ‘The Engel property of the multiplicative group of a group algebra’, Dokl. Akad. Nauk SSSR 314(1) (1990), 1820.Google Scholar
Bovdi, A. A. and Khripta, I. I., ‘The Engel property of the multiplicative group of a group algebra’, Mat. Sb. 182(1) (1991), 130144.Google Scholar
Golod, E. S., ‘Some problems of Burnside type’, in: Proceedings of the International Congress Mathematicians (Moscow, 1966) (Izdat. ‘Mir’, Moscow, 1968), 284289.Google Scholar
Hall, M. Jr, The Theory of Groups (Macmillan, New York, 1959).Google Scholar
Hall, P., The Edmonton Notes on Nilpotent Groups, Queen Mary College Mathematics Notes (Mathematics Department, Queen Mary College, London, 1969).Google Scholar
Havas, G. and Vaughan-Lee, M. R., ‘4-Engel groups are locally nilpotent’, Internat. J. Algebra Comput. 15(4) (2005), 649682.CrossRefGoogle Scholar
Heineken, H., ‘Engelsche Elemente der Länge drei’, Illinois J. Math. 5 (1961), 681707.CrossRefGoogle Scholar
Khripta, I., ‘The nilpotence of the multiplicative group of a group ring’, Mat. Zametki 11 (1972), 191200.Google Scholar
Khripta, I., ‘The nilpotence of the multiplicative group of a group ring’, Latvian Math. Yearbook, Izdat. Zinatne, Riga 13 (1973), 119127 (in Russian).Google Scholar
Medvedev, Y., ‘On compact Engel groups’, Israel J. Math. 135 (2003), 147156.CrossRefGoogle Scholar
Plotkin, B. I., Groups of Automorphisms of Algebraic Systems (Wolters-Noordhoff, Groningen, 1972). Translated from the Russian by K. A. Hirsch.Google Scholar
Ramezan-Nassab, M., ‘Group algebras with Engel unit groups’, J. Aust. Math. Soc. 101(2) (2016), 244252.CrossRefGoogle Scholar
Ramezan-Nassab, M., ‘Group algebras with locally nilpotent unit groups’, Comm. Algebra 44(2) (2016), 604612.CrossRefGoogle Scholar
Ramezan-Nassab, M., ‘Group algebras whose p-elements form a subgroup’, J. Algebra Appl. 16(9) (2017), 1750170.Google Scholar
Robinson, D., A Course in the Theory of Groups, 2nd edn, Graduate Texts in Mathematics, 80 (Springer, New York, 1996).CrossRefGoogle Scholar
Shalev, A., ‘On associative algebras satisfying the Engel condition’, Israel J. Math. 67(3) (1989), 287290.CrossRefGoogle Scholar
Suprunenko, D. A. and Garashchuk, M. S., ‘Linear groups with Engel’s condition’, Dokl. Akad. Nauk BSSR 6 (1962), 277280.Google Scholar
Traustason, G., ‘Engel groups’, in: Groups St Andrews 2009 in Bath, Vol. 2, London Mathematical Society Lecture Note Series, 388 (Cambridge University Press, Cambridge, 2011), 520550.CrossRefGoogle Scholar
Wilson, J. and Zelmanov, E., ‘Identities for Lie algebras of pro-p groups’, J. Pure Appl. Algebra 81(1) (1992), 103109.CrossRefGoogle Scholar