Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-04T18:06:55.932Z Has data issue: false hasContentIssue false

GENERALIZED JORDAN DERIVATIONS ON SEMIPRIME RINGS

Published online by Cambridge University Press:  29 July 2019

BRUNO L. M. FERREIRA*
Affiliation:
Universidade Tecnológica Federal do Paraná, Avenida Professora Laura Pacheco Bastos, 800, 85053-510 Guarapuava, Brazil email [email protected]
RUTH N. FERREIRA
Affiliation:
Universidade Tecnológica Federal do Paraná, Avenida Professora Laura Pacheco Bastos, 800, 85053-510 Guarapuava, Brazil email [email protected]
HENRIQUE GUZZO Jr.
Affiliation:
Universidade de São Paulo, Rua do Matão, 1010, 05508-090 São Paulo, Brazil email [email protected]

Abstract

The purpose of this note is to prove the following. Suppose $\mathfrak{R}$ is a semiprime unity ring having an idempotent element $e$ ($e\neq 0,~e\neq 1$) which satisfies mild conditions. It is shown that every additive generalized Jordan derivation on $\mathfrak{R}$ is a generalized derivation.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brešar, M., ‘Jordan derivations on semiprime rings’, Proc. Amer. Math. Soc. 104 (1988), 10031006.Google Scholar
Călugăreanu, G., ‘A new class of semiprime rings’, Houston J. Math. 44 (2018), 2130.Google Scholar
Herstein, I. N., ‘Jordan derivations of prime rings’, Proc. Amer. Math. Soc. 8 (1957), 11041110.Google Scholar
Jacobson, N., Structure of Rings, American Mathematical Society Colloquium Publications, 37 (American Mathematical Society, Providence, RI, 1964).Google Scholar
Jing, W. and Lu, S., ‘Generalized Jordan derivations on prime rings and standard operator algebras’, Taiwanese J. Math. 7 (2003), 605613.Google Scholar