Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Cardassi, Carmen Silvia
1985.
Banach Spaces.
Vol. 1166,
Issue. ,
p.
11.
Cardassi, Carmen Silvia
1985.
Numerical radius-attaining operators on 𝐶(𝐾).
Proceedings of the American Mathematical Society,
Vol. 95,
Issue. 4,
p.
537.
Cardassi, Carmen Silvia
1985.
Density of numerical radius attaining operators on some reflexive spaces.
Bulletin of the Australian Mathematical Society,
Vol. 31,
Issue. 1,
p.
1.
Payá, Rafael
1992.
A counterexample on numberical radius attaining operators.
Israel Journal of Mathematics,
Vol. 79,
Issue. 1,
p.
83.
Acosta, María D.
1993.
Every real Banach space can be renormed to satisfy the denseness of numerical radius attaining operators.
Israel Journal of Mathematics,
Vol. 81,
Issue. 3,
p.
273.
Enflo, Per
Kover, Janice
and
Smithies, Laura
2001.
Denseness for norm attaining operator-valued functions.
Linear Algebra and its Applications,
Vol. 338,
Issue. 1-3,
p.
139.
Choi, Yun Sung
Garcia, Domingo
Kim, Sung Guen
and
Maestre, Manuel
2004.
Norm or numerical radius attaining polynomials on C(K).
Journal of Mathematical Analysis and Applications,
Vol. 295,
Issue. 1,
p.
80.
Acosta, Maria D.
Guerrero, Julio Becerra
and
Galán, Manuel Ruiz
2004.
James type results for polynomials and symmetric multilinear forms.
Arkiv för Matematik,
Vol. 42,
Issue. 1,
p.
1.
Acosta, Maria D.
Guerrero, Julio Becerra
and
Galán, Manuel Ruiz
2004.
James type results for polynomials and symmetric multilinear forms.
Arkiv för matematik,
Vol. 42,
Issue. 1,
p.
1.
Ruiz Galán, Manuel
2010.
Convex numerical radius.
Journal of Mathematical Analysis and Applications,
Vol. 361,
Issue. 2,
p.
481.
Avilés, A.
Guirao, A.J.
and
Rodríguez, J.
2014.
On the Bishop–Phelps–Bollobás property for numerical radius inC(K)spaces.
Journal of Mathematical Analysis and Applications,
Vol. 419,
Issue. 1,
p.
395.
Kim, Sun Kwang
Lee, Han Ju
and
Martín, Miguel
2014.
On the Bishop-Phelps-Bollobás Property for Numerical Radius.
Abstract and Applied Analysis,
Vol. 2014,
Issue. ,
p.
1.
Capel, Ángela
Martín, Miguel
and
Merí, Javier
2017.
Numerical radius attaining compact linear operators.
Journal of Mathematical Analysis and Applications,
Vol. 445,
Issue. 2,
p.
1258.
Dantas, Sheldon
García, Domingo
Maestre, Manuel
and
Roldán, Óscar
2022.
Operator and Norm Inequalities and Related Topics.
p.
519.
Jung, Mingu
2023.
A note on numerical radius attaining mappings.
Proceedings of the American Mathematical Society,
Vol. 151,
Issue. 10,
p.
4419.
Bachir, Mohammed
2023.
Vector-valued numerical radius and σ-porosity.
Journal of Mathematical Analysis and Applications,
Vol. 526,
Issue. 1,
p.
127219.
Dantas, Sheldon
Kim, Sun Kwang
Lee, Han Ju
and
Mazzitelli, Martin
2024.
On various types of density of numerical radius attaining operators.
Linear and Multilinear Algebra,
Vol. 72,
Issue. 8,
p.
1221.