Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T12:29:32.212Z Has data issue: false hasContentIssue false

Changing the scalar multiplication on a vector lattice

Published online by Cambridge University Press:  09 April 2009

Paul Conard
Affiliation:
University of KansasLAWRENCE Kansas 6604, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout this paper only abelian l-groups will be considered and G will denote an abelian l-group. G is large in the l-group H or H is an essential extension of G if G is an l-subgroup of H and for each l-ideal L ≠ 0 of H we have LG ≠ 0. A ν-hull of G is a minimal vector lattice that contains G and is an essential extension of G. Each G admits a ν-hull (Conrad (1970)).We shall be interested in the following properties of G.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1975

References

Bernau, S. (1965), ‘Unique representations of Archimedean lattice groups and normal Archimedean lattice rings’, Proc. London Math. Soc. 15, 599631.CrossRefGoogle Scholar
Bernau, S. (1966), Orthocompletions of lattice groups’, Proc. London Math. Soc. 16, 107130.CrossRefGoogle Scholar
Bigard, A. and Keimel, K. (1969), ‘Sur les endomorphismes conservant les polares d'un groupe réticule archimedien’, Ball. Soc. France 97, 381398.CrossRefGoogle Scholar
Bleier, R. (1971), ‘Minimal vector lattice cover’, Bull. Australian Math. Soc. 5, 331335.CrossRefGoogle Scholar
Byrd, R. (1966), Lattices ordered groups (Dissertation Tulane Univ. 1966).Google Scholar
Paul, Conrad (1966), ‘Archimedean extensions of lattice-ordered groups’, J. Indian Math. Soc. 30, 131160.Google Scholar
Paul, Conrad, Harvey, J. and Holland, C. (1963), ‘The Hahn embedding theorem for abelian lattice ordered groups’, Trans. Amer. Math. Soc. 108, 143169.Google Scholar
Paul, Conrad (1970), Lattice ordered groups (Lecture Notes, Tulane Univ. 1970).Google Scholar
Paul, Conrad and Diem, J. (1971), ‘The ring of polar preserving endomorphisms of an l-group’, illinois J. Math. 15, 222240.Google Scholar
Paul, Conrad (1974), ‘Countable vector lattices’, Bull. Austral. Math. Soc. 10, 371376.Google Scholar
Hahn, H. (1907), ‘Uber die nichtarchimedischen Grossensysteme’, Sitzungsberichte der Kaiserlchen Akademie der Wissensschaften, Vienna 116, 601653.Google Scholar
Iwasawa, K. (1943), ‘On the structure of conditionally complete lattice-groups’, Japan J. Math. 18, 777789.CrossRefGoogle Scholar
Wolfenstein, S., Contribution à étude des groupes réticules: extensions archimediennes, groupes à valeur normales (These, U. of Paris).Google Scholar