1 Introduction
The study of graph $C^*$ -algebras was motivated, among other reasons, by the Doplicher–Roberts algebra $\mathcal {O}_\rho $ associated to a group representation $\rho $ (see [Reference Kajiwara, Pinzari and Watatani19, Reference Mann, Raeburn and Sutherland22]). It is natural to imagine that a rank k graph is related to a fixed set of k representations $\rho _1,\ldots ,\rho _k$ satisfying certain properties.
Given a compact group G and k finite-dimensional unitary representations $\rho _i$ on Hilbert spaces $\mathcal H_i$ of dimensions $d_i$ for $i=1,\ldots ,k$ , we first construct a product system $\mathcal E$ indexed by the semigroup $(\mathbb {N}^k,+)$ with fibers $\mathcal E_{n}=\mathcal H_1^{\otimes n_1}\otimes \cdots \otimes \mathcal H_k^{\otimes n_k}$ for $n=(n_1,\ldots ,n_k)\in \mathbb {N}^k$ . Using the representations $\rho _i$ , the group G acts on each fiber of $\mathcal {E}$ in a compatible way, so we obtain an action of G on the Cuntz–Pimsner algebra $\mathcal {O}(\mathcal {E})$ . This action determines the crossed product $\mathcal {O}(\mathcal {E})\rtimes G$ and the fixed point algebra $\mathcal {O}(\mathcal {E})^G$ .
Inspired by Section 7 of [Reference Kajiwara, Pinzari and Watatani19] and Section 3.3 of [Reference Albandik and Meyer1], we define a higher rank Doplicher–Roberts algebra $\mathcal O_{\rho _1,\ldots ,\rho _k}$ associated to the representations $\rho _1,\ldots ,\rho _k$ . This algebra is constructed from intertwiners $Hom (\rho ^n, \rho ^m)$ , where $\rho ^n=\rho _1^{\otimes n_1}\otimes \cdots \otimes \rho _k^{\otimes n_k}$ is acting on $\mathcal {H}^n=\mathcal H_1^{\otimes n_1}\otimes \cdots \otimes \mathcal H_k^{\otimes n_k}$ for $n=(n_1,\ldots ,n_k)\in \mathbb N^k$ . We show that $\mathcal O_{\rho _1,\ldots ,\rho _k}$ is isomorphic to $\mathcal {O}(\mathcal {E})^G$ .
If the representations $\rho _1,\ldots ,\rho _k$ satisfy some mild conditions, we construct a k-colored graph $\Lambda $ with vertex space $\Lambda ^0=\hat {G}$ , and with edges $\Lambda ^{\varepsilon _i}$ given by some matrices $M_i$ indexed by $\hat {G}$ . Here $\varepsilon _i=(0,\ldots ,1,\ldots ,0)\in \mathbb {N}^k$ with $1$ in position i are the canonical generators. For $v,w\in \hat {G}$ , the matrices $M_i$ have entries
which is the multiplicity of v in $w\otimes \rho _i$ for $i=1,\ldots ,k$ . Note that the matrices $M_i$ commute because $\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$ for all $i,j=1,\ldots ,k$ and therefore
By a particular choice of isometric intertwiners in $Hom(v,w\otimes \rho _i)$ for each $v,w\in \hat {G}$ and for each i, we can choose bijections
obtaining a set of commuting squares for $\Lambda $ . For $k\ge 3$ , we need to check the associativity of the commuting squares, that is,
as bijections from $\Lambda ^{\varepsilon _i}\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _\ell }$ to $\Lambda ^{\varepsilon _\ell }\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _i}$ for all $i<j<\ell $ (see [Reference Fowler and Sims14]). If these conditions are satisfied, we obtain a rank k graph $\Lambda $ , which is row-finite with no sources but, in general, is not unique.
In many situations, $\Lambda $ is cofinal and it satisfies the aperiodicity condition, so $C^*(\Lambda )$ is simple. For $k=2$ , the $C^*$ -algebra $C^*(\Lambda )$ is unique when it is simple and purely infinite, because its K-theory depends only on the matrices $M_1, M_2$ . It is an open question what happens for $k\ge 3$ .
Assuming that the representations $\rho _1,\ldots ,\rho _k$ determine a rank k graph $\Lambda $ , we prove that the Doplicher–Roberts algebra $\mathcal O_{\rho _1,\ldots ,\rho _k}$ is isomorphic to a corner of $C^*(\Lambda )$ , so if $C^*(\Lambda )$ is simple, then $\mathcal O_{\rho _1,\ldots ,\rho _k}$ is Morita equivalent to $C^*(\Lambda )$ . In particular cases, we can compute its K-theory using results from [Reference Evans11].
2 The product system
Product systems over arbitrary semigroups were introduced by Fowler [Reference Fowler13], inspired by work of Arveson, and studied by several authors (see [Reference Albandik and Meyer1, Reference Carlsen, Larsen, Sims and Vittadello4, Reference Sims and Yeend26]). In this paper, we are mostly interested in product systems $\mathcal {E}$ indexed by $( \mathbb {N}^k , +)$ , associated to some representations $\rho _1,\ldots ,\rho _k$ of a compact group G. We remind the reader of some general definitions and constructions with product systems, but we restrict our attention to the Cuntz–Pimsner algebra $\mathcal {O}(\mathcal {E})$ and we mention some properties in particular cases only (see Example 2.3 for $P=\mathbb {N}^k$ ).
Definition 2.1. Let $(P, \cdot )$ be a discrete semigroup with identity e and let A be a $C^*$ -algebra. A product system of $C^*$ -correspondences over A indexed by P is a semigroup $\mathcal {E}=\bigsqcup _{p\in P}\mathcal {E}_p$ and a map $\mathcal {E}\to P$ such that:
-
• for each $p\in P$ , the fiber $\mathcal {E}_p\subset \mathcal {E}$ is a $C^*$ -correspondence over A with inner product $\langle \cdot ,\cdot \rangle _p$ ;
-
• the identity fiber $\mathcal {E}_e$ is A viewed as a $C^*$ -correspondence over itself;
-
• for $p,q\in P\setminus \{e\}$ , the multiplication map
$$ \begin{align*}\mathcal{M}_{p,q}:\mathcal{E}_p\times \mathcal{E}_q\to \mathcal{E}_{pq},\;\; \mathcal{M}_{p,q}(x,y)= xy\end{align*} $$induces an isomorphism $\mathcal {M}_{p,q}:\mathcal {E}_p\otimes _A \mathcal {E}_q\to \mathcal {E}_{pq}$ ; and -
• multiplication in $\mathcal {E}$ by elements of $\mathcal {E}_e=A$ implements the right and left actions of A on each $\mathcal {E}_p$ . In particular, $\mathcal {M}_{p,e}$ is an isomorphism.
Let $\phi _p:A\to \mathcal {L}(\mathcal {E}_p)$ be the homomorphism implementing the left action. The product system $\mathcal {E}$ is said to be essential if each $\mathcal {E}_p$ is an essential correspondence, that is, if the span of $\phi _p(A)\mathcal {E}_p$ is dense in $\mathcal {E}_p$ for all $p\in P$ . In this case, the map $\mathcal {M}_{e,p}$ is also an isomorphism.
If the maps $\phi _p$ take values in $\mathcal {K}(\mathcal {E}_p)$ , then the product system is called row-finite or proper. If all maps $\phi _p$ are injective, then $\mathcal {E}$ is called faithful.
Definition 2.2. Given a product system $\mathcal {E}\to P$ over A and a $C^*$ -algebra B, a map $\psi :\mathcal {E}\to B$ is called a Toeplitz representation of $\mathcal {E}$ if:
-
• denoting $\psi _p:=\psi |_{\mathcal {E}_p}$ , each $\psi _p:\mathcal {E}_p\to B$ is linear, $\psi _e:A\to B$ is a $*$ -homomorphism, and
$$ \begin{align*}\psi_e(\langle x,y\rangle_p)=\psi_p(x)^*\psi_p(y)\end{align*} $$for all $x,y\in \mathcal {E}_p$ ; and -
• $\psi _p(x)\psi _q(y)=\psi _{pq}(xy)$ for all $p,q\in P, x\in \mathcal {E}_p, y\in \mathcal {E}_q$ .
For each $p\in P$ , we write $\psi ^{(p)}$ for the homomorphism $\mathcal {K}(\mathcal {E}_p)\to B$ obtained by extending the map $\theta _{\xi , \eta }\mapsto \psi _p(\xi )\psi _p(\eta )^*$ , where
The Toeplitz representation $\psi :\mathcal {E}\to B$ is Cuntz–Pimsner covariant if $\psi ^{(p)}(\phi _p(a))=\psi _e(a)$ for all $p\in P$ and all $a\in A$ such that $\phi _p(a)\in \mathcal {K}(\mathcal {E}_p)$ .
There is a $C^*$ -algebra $\mathcal {T}_A(\mathcal {E})$ called the Toeplitz algebra of $\mathcal {E}$ and a representation $i_{\mathcal {E}}:\mathcal {E}\to \mathcal {T}_A(\mathcal {E})$ which is universal in the following sense: $\mathcal {T}_A(\mathcal {E})$ is generated by $i_{\mathcal {E}}(\mathcal {E})$ and, for any representation $\psi :\mathcal {E}\to B$ , there is a homomorphism $\psi _*:\mathcal {T}_A(\mathcal {E})\to B$ such that $\psi _*\circ i_{\mathcal {E}}=\psi $ .
The Cuntz–Pimsner algebra $\mathcal {O}_A(\mathcal {E})$ of a product system $\mathcal {E}\to P$ is universal for Cuntz–Pimsner covariant representations.
There are various extra conditions on a product system $\mathcal {E}\to P$ and several other notions of covariance besides the Cuntz–Pimsner covariance from Definition 2.2, which allow one to define the Cuntz–Pimsner algebra $\mathcal {O}_A(\mathcal {E})$ or the Cuntz–Nica–Pimsner algebra $\mathcal {N}\mathcal {O}_A(\mathcal {E})$ satisfying certain properties (see [Reference Albandik and Meyer1, Reference Carlsen, Larsen, Sims and Vittadello4, Reference Dor-On and Kakariadis10, Reference Fowler13, Reference Sims and Yeend26], among others). We mention that $\mathcal {O}_A(\mathcal {E})$ (or $\mathcal {N}\mathcal {O}_A(\mathcal {E})$ ) comes with a covariant representation $j_{\mathcal {E}}:\mathcal {E}\to \mathcal {O}_A(\mathcal {E})$ and is universal in the following sense: $\mathcal {O}_A(\mathcal {E})$ is generated by $j_{\mathcal {E}}(\mathcal {E})$ and, for any covariant representation $\psi :\mathcal {E}\to B$ , there is a homomorphism $\psi _*:\mathcal {O}_A(\mathcal {E})\to B$ such that $\psi _*\circ j_{\mathcal {E}}=\psi $ . Under certain conditions, $\mathcal {O}_A(\mathcal {E})$ satisfies a gauge invariant uniqueness theorem.
Example 2.3. For a product system $\mathcal {E}\to P$ with fibers $\mathcal {E}_p$ that are nonzero finite-dimensional Hilbert spaces, and, in particular, $A=\mathcal {E}_e=\mathbb {C}$ , let us fix an orthonormal basis $\mathcal {B}_p$ in $\mathcal {E}_p$ . Then a Toeplitz representation $\psi :\mathcal {E}\to B$ gives rise to a family of isometries $\{\psi (\xi ): \xi \in \mathcal {B}_p\}_{p\in P}$ with mutually orthogonal range projections. In this case, $\mathcal {T}(\mathcal {E})=\mathcal {T}_{\mathbb {C}}(\mathcal {E})$ is generated by a collection of Cuntz–Toeplitz algebras which interact according to the multiplication maps $\mathcal {M}_{p,q}$ in $\mathcal {E}$ .
A representation $\psi :\mathcal {E}\to B$ is Cuntz–Pimsner covariant if
for all $p\in P$ . The Cuntz–Pimsner algebra $\mathcal {O}(\mathcal {E})=\mathcal {O}_{\mathbb {C}}(\mathcal {E})$ is generated by a collection of Cuntz algebras, so it could be thought of as a multidimensional Cuntz algebra. Fowler proved in [Reference Fowler12] that if the function $p\mapsto \dim \mathcal {E}_p$ is injective, then the algebra ${\mathcal O}(\mathcal {E})$ is simple and purely infinite. For other examples of multidimensional Cuntz algebras, see [Reference Burgstaller3].
Example 2.4. A row-finite k-graph with no sources $\Lambda $ (see [Reference Kumjian, Pask, Raeburn and Renault18]) determines a product system $\mathcal {E}\to \mathbb {N}^k$ with $\mathcal {E}_0=A=C_0(\Lambda ^0)$ and $\mathcal {E}_n=\overline {C_c(\Lambda ^n)}$ for $n\neq 0$ such that we have a $\mathbb {T}^k$ -equivariant isomorphism $\mathcal {O}_A(\mathcal {E})\cong C^*(\Lambda )$ . Recall that, for product systems indexed by $\mathbb {N}^k$ , the universal property induces a gauge action on $\mathcal {O}_A(\mathcal {E})$ defined by $\gamma _z(j_{\mathcal {E}}(\xi ))=z^nj_{\mathcal {E}}(\xi )$ for $z\in \mathbb {T}^k$ and $\xi \in \mathcal {E}_n$ .
The following two definitions and two results are taken from [Reference Deaconu, Huang and Sims7]; see also [Reference Hao and Ng15, Reference Kumjian and Pask17].
Definition 2.5. An action $ \beta $ of a locally compact group $ G $ on a product system $ \mathcal {E} \to P $ over A is a family $ (\beta ^{p})_{p \in P} $ such that $ \beta ^{p} $ is an action of $ G $ on each fiber $\mathcal {E}_{p} $ compatible with the action $\alpha =\beta ^e$ on A, and, furthermore, the actions $(\beta ^p)_{p\in P}$ are compatible with the multiplication maps $\mathcal {M}_{p,q}$ in the sense that
for all $ g \in G $ , $ x \in \mathcal {E}_{p} $ and $ y \in \mathcal {E}_{q} $ .
Definition 2.6. If $ \beta $ is an action of $ G $ on the product system $\mathcal {E} \to P $ , we define the crossed product $\mathcal {E} \rtimes _{\beta } G $ as the product system indexed by $ P $ with fibers $ \mathcal {E}_{p} \rtimes _{\beta ^{p}} G $ , which are $ C^{\ast } $ -correspondences over $ A \rtimes _{\alpha } G $ . For $ \zeta \in C_c(G,\mathcal {E}_{p}) $ and $ \eta \in C_c(G,\mathcal {E}_{q}) $ , the product $ \zeta \eta \in C_c(G,\mathcal {E}_{p q}) $ is defined by
Proposition 2.7. The set $ \mathcal {E} \rtimes _{\beta } G = \bigsqcup _{p \in P} \mathcal {E}_{p} \rtimes _{\beta ^{p}} G $ with the above multiplication satisfies all the properties of a product system of $ C^{\ast } $ -correspondences over $ A \rtimes _{\alpha } G $ .
Proposition 2.8. Suppose that a locally compact group $ G $ acts on a row-finite and faithful product system $ \mathcal {E} $ indexed by $ P = (\mathbb {N}^{k},+) $ via automorphisms $ \beta ^{p}_{g} $ . Then $ G $ acts on the Cuntz–Pimsner algebra $\mathcal {O}_{A}(\mathcal {E}) $ via automorphisms denoted by $ \gamma _{g} $ . Moreover, if $ G $ is amenable, then $ \mathcal {E} \rtimes _{\beta } G $ is row-finite and faithful, and
Now we define the product system associated to k representations of a compact group G. We limit ourselves to finite-dimensional unitary representations, even though the definition makes sense in greater generality.
Definition 2.9. Given a compact group G and k finite-dimensional unitary representations $\rho _i$ of G on Hilbert spaces $\mathcal H_i$ for $i=1,\ldots ,k$ , we construct the product system $\mathcal {E}=\mathcal {E}(\rho _1,\ldots ,\rho _k)$ indexed by the commutative monoid $(\mathbb N^k,+)$ , with fibers
for $n=(n_1,\ldots ,n_k)\in \mathbb {N}^k$ ; in particular, $A=\mathcal E_0=\mathbb C$ . The multiplication maps
in $\mathcal {E}$ are defined by using the standard isomorphisms $\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$ for all $i<j$ . The associativity in $\mathcal {E}$ follows from the fact that
as maps from $\mathcal {E}_n\times \mathcal {E}_m\times \mathcal {E}_p$ to $\mathcal {E}_{n+m+p}.$ Then $\mathcal {E}=\mathcal {E}(\rho _1,\ldots ,\rho _k)$ is called the product system of the representations $\rho _1,\ldots ,\rho _k$ .
Remark 2.10. Similarly, a semigroup P of unitary representations of a group G determines a product system $\mathcal {E}\to P$ .
Proposition 2.11. With notation as in Definition 2.9, assume that $d_i=\dim \mathcal {H}_i\ge 2$ . Then the Cuntz–Pimsner algebra $\mathcal {O}(\mathcal {E})$ associated to the product system $\mathcal {E}\to \mathbb {N}^k$ described above is isomorphic with the $C^*$ -algebra of a rank k graph $\Gamma $ with a single vertex and with $|\Gamma ^{\varepsilon _i}|=d_i$ . This isomorphism is equivariant for the gauge action. Moreover,
where $\mathcal O_n$ is the Cuntz algebra.
Proof. Indeed, by choosing a basis in each $\mathcal {H}_i$ , we get the edges $\Gamma ^{\varepsilon _i}$ in a k-colored graph $\Gamma $ with a single vertex. The isomorphisms $\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$ determine the factorization rules of the form $ef=fe$ for $e\in \Gamma ^{\varepsilon _i}$ and $f\in \Gamma ^{\varepsilon _j}$ , which obviously satisfy the associativity condition. In particular, the corresponding isometries in $C^*(\Gamma )$ commute and determine, by the universal property, a surjective homomorphism $\varphi $ onto $\mathcal {O}(\mathcal {E})$ , preserving the gauge action. Using the gauge invariant uniqueness theorem for k-graph algebras, the map $\varphi $ is an isomorphism. In particular, $\mathcal {O}(\mathcal {E})\cong \mathcal O_{d_1}\otimes \cdots \otimes \mathcal O_{d_k}$ .
Remark 2.12. For $d_i\ge 2$ , the $C^*$ -algebra $\mathcal {O}(\mathcal {E})\cong C^*(\Gamma )$ is always simple and purely infinite since it is a tensor product of simple and purely infinite $C^*$ -algebras. If $d_i=1$ for some i, then the isomorphism in Proposition 2.11 still holds, but $C^*(\Gamma )\cong \mathcal {O}(\mathcal {E})$ contains a copy of $C(\mathbb {T})$ , so it is not simple. Of course, if $d_i=1$ for all i, then $\mathcal {O}(\mathcal {E})\cong C(\mathbb {T}^k)$ . For more on single vertex rank k graphs, see [Reference Davidson and Yang5, Reference Davidson and Yang6].
Proposition 2.13. The compact group G acts on each fiber $\mathcal {E}_n$ of the product system $\mathcal E$ via the representation $\rho ^n=\rho _1^{\otimes n_1}\otimes \cdots \otimes \rho _k^{\otimes n_k}$ . This action is compatible with the multiplication maps and commutes with the gauge action of $\mathbb {T}^k$ . The crossed product $\mathcal E\rtimes G$ becomes a row-finite and faithful product system indexed by $\mathbb N^k$ over the group $C^*$ -algebra $C^*(G)$ . Moreover,
Proof. Indeed, for $g\in G$ and $\xi \in \mathcal {E}_n=\mathcal {H}^n$ , we define $g\cdot \xi =\rho ^n(g)(\xi )$ , and since $\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$ , we have $g\cdot (\xi \otimes \eta )=g\cdot \xi \otimes g\cdot \eta $ for $\xi \in \mathcal {E}_n, \eta \in \mathcal {E}_m$ . Clearly,
so the action of G commutes with the gauge action. Using Proposition 2.7, $\mathcal E\rtimes G$ becomes a product system indexed by $\mathbb N^k$ over $C^*(G)\cong \mathbb {C}\rtimes G$ with fibers $\mathcal {E}_n\rtimes G$ . The isomorphism $\mathcal {O}(\mathcal {E}) \rtimes G \cong \mathcal {O}_{C^*(G)}(\mathcal {E} \rtimes G)$ follows from Proposition 2.8.
Corollary 2.14. Since the action of G commutes with the gauge action, the group G acts on the core algebra $\mathcal {F}=\mathcal {O}(\mathcal {E})^{\mathbb {T}^k}$ .
Remark 2.15. In some cases, $\mathcal {O}(\mathcal {E})\rtimes G$ is isomorphic to the self-similar k-graph $C^*$ -algebras $\mathcal {O}_{G,\Lambda }$ introduced in [Reference Li and Yang21]. Moreover, for a self-similar k-graph $(G,\Lambda )$ with $|\Lambda ^0|=1$ , we have $\mathcal {O}_{G,\Lambda }\cong \mathcal {Q}(\Lambda \bowtie G)$ , where $\Lambda \bowtie G$ is a Zappa–Szép product and $\mathcal {Q}(\Lambda \bowtie G)$ is its boundary quotient $C^*$ -algebra (see Example 3.10(4) in [Reference Li and Yang21] and Theorem 3.3 in [Reference Li and Yang20]). I thank the referee for bringing this relationship to my attention.
3 The Doplicher–Roberts algebra
The Doplicher–Roberts algebras $\mathcal {O}_\rho $ , denoted by ${\mathcal O}_G$ in [Reference Doplicher and Roberts8], were introduced to construct a new duality theory for compact Lie groups G that strengthens the Tannaka–Krein duality. Here $\rho $ is the n-dimensional representation of G defined by the inclusion $G\subseteq U(n)$ in some unitary group $U(n)$ . Let ${\mathcal T}_G$ denote the representation category whose objects are tensor powers $\rho ^p=\rho ^{\otimes p}$ for $p\ge 0$ , and whose arrows are the intertwiners $Hom(\rho ^p, \rho ^q)$ . The group G acts via $\rho $ on the Cuntz algebra ${\mathcal O}_n$ and ${\mathcal O}_G={\mathcal O}_\rho $ is identified in [Reference Doplicher and Roberts8] with the fixed point algebra ${\mathcal O}_n^G$ . If $\sigma $ denotes the restriction to ${\mathcal O}_\rho $ of the canonical endomorphism of $\mathcal {O}_n$ , then ${\mathcal T}_G$ can be reconstructed from the pair $({\mathcal O}_\rho ,\sigma )$ . Subsequently, Doplicher–Roberts algebras were associated to any object $\rho $ in a strict tensor $C^*$ -category (see [Reference Doplicher and Roberts9]).
Given finite-dimensional unitary representations $\rho _1,\ldots ,\rho _k$ of a compact group G on Hilbert spaces $\mathcal H_1,\ldots , \mathcal H_k$ , we construct a Doplicher–Roberts algebra $\mathcal O_{\rho _1,\ldots ,\rho _k}$ from intertwiners
where, for $n=(n_1,\ldots ,n_k)\in \mathbb N^k$ , the representation $\rho ^n=\rho _1^{\otimes n_1}\otimes \cdots \otimes \rho _k^{\otimes n_k}$ acts on $\mathcal {H}^n=\mathcal H_1^{\otimes n_1}\otimes \cdots \otimes \mathcal H_k^{\otimes n_k}$ . Note that $\rho ^0=\iota $ is the trivial representation of G, acting on $\mathcal {H}^0=\mathbb {C}$ . This Doplicher–Roberts algebra is a subalgebra of $\mathcal {O}(\mathcal {E})$ for the product system $\mathcal {E}$ , as in Definition 2.9.
Lemma 3.1. Consider
Then the linear span of $\mathcal {A}_0$ becomes a $*$ -algebra $\mathcal {A}$ with appropriate multiplication and involution. This algebra has a natural $\mathbb {Z}^k$ -grading coming from a gauge action of $\mathbb {T}^k$ . Moreover, the Cuntz–Pimsner algebra $\mathcal {O}(\mathcal {E})$ of the product system $\mathcal {E}=\mathcal {E}(\rho _1,\ldots ,\rho _k)$ is equivariantly isomorphic to the $C^*$ -closure of $\mathcal {A}$ in the unique $C^*$ -norm for which the gauge action is isometric.
Proof. Recall that the Cuntz algebra $\mathcal {O}_n$ contains a canonical Hilbert space $\mathcal {H}$ of dimension n and it can be constructed as the closure of the linear span of $ \bigcup _{p,q\in \mathbb {N}}\mathcal {L}(\mathcal H^p,\mathcal H^q)$ using embeddings
where $\mathcal {H}^p=\mathcal H^{\otimes p}$ and $I:\mathcal {H}\to \mathcal {H}$ is the identity map. This linear span becomes a $*$ -algebra with a multiplication given by composition and an involution (see [Reference Doplicher and Roberts8] and Proposition 2.5 in [Reference Katsoulis16]).
Similarly, for all $r\in \mathbb {N}^k$ , we consider embeddings $\mathcal {L}(\mathcal {H}^n,\mathcal {H}^m)\subseteq \mathcal {L}(\mathcal {H}^{n+r},\mathcal {H}^{m+r})$ given by $T\mapsto T\otimes I_r$ , where $I_r:{\mathcal H}^r\to {\mathcal H}^r$ is the identity map, and we endow $\mathcal {A}$ with a multiplication given by composition and an involution. More precisely, if $S\in \mathcal {L}(\mathcal {H}^n,\mathcal {H}^m)$ and $T\in \mathcal {L}(\mathcal {H}^q,\mathcal {H}^p)$ , then the product $ST$ is
where we write $p\vee n$ for the coordinatewise maximum. This multiplication is well defined in $\mathcal {A}$ and is associative. The adjoint of $T\in \mathcal {L}(\mathcal {H}^n,\mathcal {H}^m)$ is $T^*\in \mathcal {L}(\mathcal {H}^m,\mathcal {H}^n)$ .
There is a natural $\mathbb Z^k$ -grading on $\mathcal {A}$ given by the gauge action $\gamma $ of $\mathbb {T}^k$ , where, for $z=(z_1,\ldots ,z_k)\in \mathbb {T}^k$ and $T\in \mathcal {L}(\mathcal {H}^n,\mathcal {H}^m)$ , we define
Adapting the argument in Theorem 4.2 in [Reference Doplicher and Roberts9] for $\mathbb {Z}^k$ -graded $C^*$ -algebras, the $C^*$ -closure of $\mathcal {A}$ in the unique $C^*$ -norm for which $\gamma _z$ is isometric is well defined. The map
where
for $T_i\in \mathcal {L}(\mathcal H_i^{n_i},\mathcal H_i^{m_i})$ for $i=1,\ldots ,k$ preserves the gauge action and it can be extended to an equivariant isomorphism from $\mathcal {O}(\mathcal {E})\cong \mathcal {O}_{d_1}\otimes \cdots \otimes \mathcal {O}_{d_k}$ to the $C^*$ -closure of $\mathcal {A}$ . Note that the closure of $ \bigcup _{n\in \mathbb {N}^k}\mathcal {L}(\mathcal H^n,\mathcal H^n)$ is isomorphic to the core $\mathcal {F}=\mathcal {O}(\mathcal {E})^{\mathbb {T}^k}$ , that is the fixed point algebra under the gauge action, which is a UHF-algebra.
To define the Doplicher–Roberts algebra $\mathcal O_{\rho _1,\ldots ,\rho _k}$ , we again identify $Hom(\rho ^n,\rho ^m)$ with a subset of $Hom(\rho ^{n+r},\rho ^{m+r})$ for each $r\in \mathbb N^k$ , via $T\mapsto T\otimes I_r$ . After this identification, it follows that the linear span ${}^0{\mathcal O}_{\rho _1,\ldots , \rho _k}$ of $ \bigcup _{m,n\in \mathbb {N}^k}Hom(\rho ^n, \rho ^m)\subseteq \mathcal {A}_0$ has a natural multiplication and involution inherited from $\mathcal {A}$ . Indeed, a computation shows that if $S\in Hom(\rho ^n, \rho ^m)$ and $T\in Hom(\rho ^q,\rho ^p)$ , then $S^*\in Hom(\rho ^m, \rho ^n)$ and
so $(S\otimes I_{p\vee n-n})\circ (T\otimes I_{p\vee n-p})\in Hom(\rho ^{q+p\vee n-p}, \rho ^{m+p\vee n-n})$ and ${}^0{\mathcal O}_{\rho _1,\ldots , \rho _k}$ is closed under these operations. Since the action of G commutes with the gauge action, there is a natural $\mathbb Z^k$ -grading of ${}^0{\mathcal O}_{\rho _1,\ldots ,\rho _k}$ given by the gauge action $\gamma $ of $\mathbb {T}^k$ on $\mathcal {A}$ .
It follows that the closure ${\mathcal O}_{\rho _1,\ldots , \rho _k}$ of ${}^0{\mathcal O}_{\rho _1,\ldots ,\rho _k}$ in $\mathcal {O}(\mathcal {E})$ is well defined, obtaining the Doplicher–Roberts algebra associated to the representations $\rho _1,\ldots ,\rho _k$ . This $C^*$ -algebra also has a $\mathbb Z^k$ -grading and a gauge action of $\mathbb {T}^k$ . By construction, ${\mathcal O}_{\rho _1,\ldots , \rho _k}\subseteq \mathcal {O}(\mathcal {E})$ .
Remark 3.2. For a compact Lie group G, our Doplicher–Roberts algebra ${\mathcal O}_{\rho _1,\ldots , \rho _k}$ is Morita equivalent with the higher rank Doplicher–Roberts algebra $\mathcal {D}$ defined in [Reference Albandik and Meyer1]. It is also the section $C^*$ -algebra of a Fell bundle over $\mathbb {Z}^k$ .
Theorem 3.3. Let $\rho _i$ be finite-dimensional unitary representations of a compact group G on Hilbert spaces $\mathcal H_i$ of dimensions $d_i\ge 2$ for $i=1,\ldots ,k$ . Then the Doplicher–Roberts algebra ${\mathcal O}_{\rho _1,\ldots ,\rho _k}$ is isomorphic to the fixed point algebra ${\mathcal O}(\mathcal {E})^G\cong (\mathcal O_{d_1}\otimes \cdots \otimes \mathcal O_{d_k})^G$ , where $\mathcal {E}=\mathcal {E}(\rho _1,\ldots ,\rho _k)$ is the product system described in Definition 2.9.
Proof. We know from Lemma 3.1 that ${\mathcal O}(\mathcal {E})$ is isomorphic to the $C^*$ -algebra generated by the linear span of $ \mathcal {A}_0= \bigcup _{m,n\in \mathbb {N}^k}\mathcal {L}({\mathcal H}^n, {\mathcal H}^m)$ . The group G acts on $\mathcal {L}({\mathcal H}^n, {\mathcal H}^m)$ by
and the fixed point set is $Hom(\rho ^n, \rho ^m)$ . Indeed, we have $g\cdot T=T$ if and only if $T\rho ^n(g)=\rho ^m(g)T$ . This action is compatible with the embeddings and the operations, so it extends to the $*$ -algebra $\mathcal {A}$ and the fixed point algebra is the linear span of $ \bigcup _{m,n\in \mathbb {N}^k}Hom(\rho ^n, \rho ^m)$ .
It follows that ${}^0{\mathcal O}_{\rho _1,\ldots ,\rho _k}\subseteq {\mathcal O}(\mathcal {E})^G$ and therefore its closure ${\mathcal O}_{\rho _1,\ldots ,\rho _k}$ is isomorphic to a subalgebra of ${\mathcal O}(\mathcal {E})^G$ . For the other inclusion, any element in ${\mathcal O}(\mathcal {E})^G$ can be approximated with an element from ${}^0{\mathcal O}_{\rho _1,\ldots ,\rho _k}$ , and hence ${\mathcal O}_{\rho _1,\ldots ,\rho _k}=\mathcal {O}(\mathcal {E})^G$ .
Remark 3.4. By left tensoring with $I_r$ for $r\in \mathbb {N}^k$ , we obtain some canonical unital endomorphisms $\sigma _r$ of ${\mathcal O}_{\rho _1,\ldots ,\rho _k}$ .
In the next section, we show that, in many cases, $\mathcal O_{\rho _1,\ldots ,\rho _k}$ is isomorphic to a corner of $C^*(\Lambda )$ for a rank k graph $\Lambda $ , so, in some cases, we can compute its K-theory. It would be nice to express the K-theory of $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$ in terms of the maps $\pi \mapsto \pi \otimes \rho _i$ defined on the representation ring $\mathcal {R}(G)$ .
4 The rank k graphs
For convenience, we first collect some facts about higher rank graphs, introduced in [Reference Kumjian, Pask, Raeburn and Renault18]. A rank k graph or k-graph $(\Lambda , d)$ consists of a countable small category $\Lambda $ with range and source maps r and s together with a functor $d : \Lambda \rightarrow \mathbb {N}^k$ called the degree map, satisfying the factorization property: for every $\lambda \in \Lambda $ and all $m, n \in \mathbb {N}^k$ with $d( \lambda ) = m + n$ , there are unique elements $\mu , \nu \in \Lambda $ such that $\lambda = \mu \nu $ and $d( \mu ) = m$ , $d( \nu ) = n$ . For $n \in \mathbb {N}^k$ , we write $\Lambda ^n := d^{-1} (n)$ and call it the set of paths of degree n. For $\varepsilon _i=(0,\ldots ,1,\ldots ,0)$ with $1$ in position i, the elements in $\Lambda ^{\varepsilon _i}$ are called edges and the elements in $\Lambda ^0$ are called vertices.
A k-graph $\Lambda $ can be constructed from $\Lambda ^0$ and from its k-colored skeleton $\Lambda ^{\varepsilon _1}\cup \cdots \cup \Lambda ^{\varepsilon _k}$ using a complete and associative collection of commuting squares or factorization rules (see [Reference Sims25]).
The k-graph $\Lambda $ is row-finite if, for all $n\in \mathbb {N}^k$ and all $v\in \Lambda ^0$ , the set $v\Lambda ^n := \{\lambda \in \Lambda ^n : r(\lambda ) = v\}$ is finite. It has no sources if $v\Lambda ^n\neq \emptyset $ for all $v\in \Lambda ^0$ and $n\in \mathbb {N}^k$ . A k-graph $\Lambda $ is said to be irreducible (or strongly connected) if, for every $u,v\in \Lambda ^0$ , there is $\lambda \in \Lambda $ such that $u = r(\lambda )$ and $v = s(\lambda )$ .
Recall that $C^*(\Lambda )$ is the universal $C^*$ -algebra generated by a family $\{S_\lambda : \lambda \in \Lambda \}$ of partial isometries satisfying:
-
• $\{S_v:v\in \Lambda ^0\}$ is a family of mutually orthogonal projections;
-
• $S_{\lambda \mu }=S_\lambda S_\mu $ for all $\lambda , \mu \in \Lambda $ such that $s(\lambda ) = r(\mu )$ ;
-
• $S_\lambda ^*S_\lambda = S_{s(\lambda )}$ for all $\lambda \in \Lambda $ ; and
-
• for all $v\in \Lambda ^0$ and $n\in \mathbb {N}^k$ ,
$$ \begin{align*} S_v=\sum_{\lambda\in v\Lambda^n}S_\lambda S_\lambda^*.\end{align*} $$
A k-graph $\Lambda $ is said to satisfy the aperiodicity condition if, for every vertex $v\in \Lambda ^0$ , there is an infinite path $x\in v\Lambda ^\infty $ such that $\sigma ^mx\neq \sigma ^nx$ for all $m\neq n$ in $\mathbb {N}^k$ , where $\sigma ^m:\Lambda ^\infty \to \Lambda ^\infty $ are the shift maps. We say that $\Lambda $ is cofinal if, for every $x\in \Lambda ^\infty $ and $v\in \Lambda ^0$ , there is $\lambda \in \Lambda $ and $n\in \mathbb {N}^k$ such that $s(\lambda )=x(n)$ and $r(\lambda )=v$ .
Assume that $\Lambda $ is row-finite with no sources and that it satisfies the aperiodicity condition. Then $C^*(\Lambda )$ is simple if and only if $\Lambda $ is cofinal (see Proposition 4.8 in [Reference Kumjian, Pask, Raeburn and Renault18] and Theorem 3.4 in [Reference Robertson and Sims23]).
We say that a path $\mu \in \Lambda $ is a loop with an entrance if $s(\mu )=r(\mu )$ , and there exists $\alpha \in s(\mu )\Lambda $ such that $d(\mu )\ge d(\alpha )$ and there is no $\beta \in \Lambda $ with $\mu = \alpha \beta $ . We say that every vertex connects to a loop with an entrance if, for every $v\in \Lambda ^0$ , there is a loop with an entrance $\mu \in \Lambda $ , and a path $\lambda \in \Lambda $ with $r(\lambda )=v$ and $s(\lambda )=r(\mu )=s(\mu )$ . If $\Lambda $ satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, then $C^*(\Lambda )$ is purely infinite (see Proposition 4.9 in [Reference Kumjian, Pask, Raeburn and Renault18] and Proposition 8.8 in [Reference Sims24]).
Given finite-dimensional unitary representations $\rho _i$ of a compact group G on Hilbert spaces $\mathcal H_i$ for $i=1,\ldots ,k$ , we want to construct a rank k graph $\Lambda =\Lambda (\rho _1,\ldots ,\rho _k)$ . Let R be the set of equivalence classes of irreducible summands $\pi :G\to U(\mathcal {H}_\pi )$ which appear in the tensor powers $\rho ^n=\rho _1^{\otimes n_1}\otimes \cdots \otimes \rho _k^{\otimes n_k}$ for $n\in \mathbb {N}^k$ , as in [Reference Mann, Raeburn and Sutherland22]. Take $\Lambda ^0=R$ and, for each $i=1,\ldots ,k$ , consider the set of edges $\Lambda ^{\varepsilon _i}$ which are uniquely determined by the matrices $M_i$ with entries
where $v,w\in R$ . The matrices $M_i$ commute since $\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$ and therefore
for all $i<j$ . This allows us to fix some bijections
for all $1\le i<j\le k$ , which determine the commuting squares of $\Lambda $ . As usual,
For $k\ge 3$ , we also need to verify that $\lambda _{ij}$ can be chosen to satisfy the associativity condition, that is,
as bijections from $\Lambda ^{\varepsilon _i}\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _\ell }$ to $\Lambda ^{\varepsilon _\ell }\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _i}$ for all $i<j<\ell $ .
Remark 4.1. Many times $R=\hat {G}$ , so $\Lambda ^0=\hat {G}$ , for example, if $\rho _i$ are faithful and $\rho _i(G)\subseteq SU(\mathcal {H}_i)$ or if G is finite, $\rho _i$ are faithful and $\dim \rho _i\ge 2$ for all $i=1,\ldots ,k$ (see Lemma 7.2 and Remark 7.4 in [Reference Kajiwara, Pinzari and Watatani19]).
Proposition 4.2. Given representations $\rho _1,\ldots ,\rho _k$ as above, assume that $\rho _i$ are faithful and that $R=\hat {G}$ . Then each choice of bijections $\lambda _{ij}$ satisfying the associativity condition determines a rank k graph $\Lambda $ which is cofinal and locally finite with no sources.
Proof. Indeed, the sets $\Lambda ^{\varepsilon _i}$ are uniquely determined and the choice of bijections $\lambda _{ij}$ satisfying the associativity condition is enough to determine $\Lambda $ . Since the entries of the matrices $M_i$ are finite and there are no zero rows, the graph is locally finite with no sources. To prove that $\Lambda $ is cofinal, fix a vertex $v\in \Lambda ^0$ and an infinite path $x\in \Lambda ^\infty $ . Arguing as in Lemma 7.2 in [Reference Kajiwara, Pinzari and Watatani19], any $w\in \Lambda ^0$ , in particular, $w=x(n)$ for a fixed n, can be joined by a path to v, so there is $\lambda \in \Lambda $ with $s(\lambda )=x(n)$ and $r(\lambda )=v$ . See also Lemma 3.1 in [Reference Mann, Raeburn and Sutherland22].
Remark 4.3. Note that the entry $M_i(w,v)$ is just the multiplicity of the irreducible representation v in $w\otimes \rho _i$ for $i=1,\ldots ,k$ . If $\rho _i^*=\rho _i$ , then the matrices $M_i$ are symmetric since
which implies $M_i(w; v) = M_i(v;w)$ . Here $\rho ^*_i$ denotes the dual representation defined by $\rho _i^*(g)=\rho _i(g^{-1})^t$ and equal, in our case, to the conjugate representation $\bar {\rho _i}$ .
For G finite, these matrices are finite, and the entries $M_i(w,v)$ can be computed using the character table of G. For G infinite, the Clebsch–Gordan relations can be used to determine the numbers $M_i(w,v)$ . Since the bijections $\lambda _{ij}$ are, in general, not unique, the rank k graph $\Lambda $ is not unique, as illustrated in some examples. It is an open question how the $C^*$ -algebra $C^*(\Lambda )$ depends, in general, on the factorization rules.
To relate the Doplicher–Roberts algebra $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$ to a rank k graph $\Lambda $ , we mimic the construction in [Reference Mann, Raeburn and Sutherland22]. For each edge $e\in \Lambda ^{\varepsilon _i}$ , choose an isometric intertwiner
in such a way that
for all $\pi \in \Lambda ^0$ , that is, the edges in $\Lambda ^{\varepsilon _i}$ ending at $\pi $ give a specific decomposition of $\mathcal {H}_\pi \otimes \mathcal {H}_i$ into irreducibles. When $\dim Hom(s(e), r(e)\otimes \rho _i)\ge 2$ , we must choose a basis of isometric intertwiners with orthogonal ranges, so, in general, $T_e$ is not unique. In fact, specific choices for the isometric intertwiners $T_e$ determine the factorization rules in $\Lambda $ and whether or not they satisfy the associativity condition.
Given $e\in \Lambda ^{\varepsilon _i}$ and $f\in \Lambda ^{\varepsilon _j}$ with $r(f)=s(e)$ , we know how to multiply $T_e\in Hom(s(e),r(e)\otimes \rho _i)$ with $T_f\in Hom(s(f),r(f)\otimes \rho _j)$ in the algebra $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$ , by viewing $Hom(s(e),r(e)\otimes \rho _i)$ as a subspace of $Hom(\rho ^n,\rho ^m)$ for some $m,n$ , and similarly for $Hom(s(f),r(f)\otimes \rho _j)$ . We choose edges $e'\in \Lambda ^{\varepsilon _i}, f'\in \Lambda ^{\varepsilon _j}$ with $s(f)=s(e'), r(e)=r(f'), r(e')=s(f')$ such that $T_eT_f=T_{f'}T_{e'}$ , where $T_{f'}\in Hom(s(f'),r(f')\otimes \rho _j)$ and $T_{e'}\in Hom(s(e'),r(e')\otimes \rho _i)$ . This is possible since
and $\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$ . In this case, we declare that $ef=f'e'$ . Repeating this process, we obtain bijections $\lambda _{ij}:\Lambda ^{\varepsilon _i}\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\to \Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _i}$ . Assuming that the associativity conditions are satisfied, we obtain a k-graph $\Lambda $ .
We write $T_{ef}=T_eT_f=T_{f'}T_{e'}=T_{f'e'}$ . A finite path $\lambda \in \Lambda ^n$ is a concatenation of edges and determines by composition a unique intertwiner
Moreover, the paths $\lambda \in \Lambda ^n$ with $r(\lambda )=\iota $ , the trivial representation, provide an explicit decomposition of $\mathcal {H}^n=\mathcal {H}_1^{\otimes n_1}\otimes \cdots \otimes \mathcal {H}_k^{\otimes n_k}$ into irreducibles, and hence
Proposition 4.4. Assuming that the choices of isometric intertwiners $T_e$ , as above, determine a k-graph $\Lambda $ , the family
is a basis for $Hom(\rho ^n, \rho ^m)$ and each $T_\lambda T^*_\mu $ is a partial isometry.
Proof. Each pair of paths $\lambda , \mu $ with $d(\lambda )=m, d(\mu )=n$ and $r(\lambda )=r(\mu )=\iota $ determines a pair of irreducible summands $T_\lambda (\mathcal {H}_{s(\lambda )}), T_\mu (\mathcal {H}_{s(\mu )})$ of $\mathcal {H}^m$ and $ \mathcal {H}^n$ , respectively. By Schur’s lemma, the space of intertwiners of these representations is trivial unless $s(\lambda )=s(\mu )$ , in which case it is the one-dimensional space spanned by $T_\lambda T_\mu ^*$ . It follows that any element of $Hom(\rho ^n, \rho ^m)$ can be uniquely represented as a linear combination of elements $T_\lambda T_\mu ^*$ , where $s(\lambda )=s(\mu )$ . Since $T_\mu $ is isometric, $T_\mu ^*$ is a partial isometry with range $\mathcal {H}_{s(\mu )}$ and hence $T_\lambda T_\mu ^*$ is also a partial isometry whenever $s(\lambda )=s(\mu )$ .
Theorem 4.5. Consider $\rho _1,\ldots , \rho _k$ finite-dimensional unitary representations of a compact group G and let $\Lambda $ be the k-colored graph with $\Lambda ^0=R\subseteq \hat {G}$ and edges $\Lambda ^{\varepsilon _i}$ determined by the incidence matrices $M_i$ defined above. Assume that the factorization rules determined by the choices of $T_e\in Hom(s(e),r(e)\otimes \rho _i)$ for all edges $e\in \Lambda ^{\varepsilon _i}$ satisfy the associativity condition, so $\Lambda $ becomes a rank k graph. If we consider $P\in C^*(\Lambda )$ ,
where $\iota $ is the trivial representation, then there is a $*$ -isomorphism of the Doplicher–Roberts algebra $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$ onto the corner $PC^*(\Lambda )P$ .
Proof. Since $C^*(\Lambda )$ is generated by linear combinations of $S_\lambda S_\mu ^*$ with $s(\lambda )=s(\mu )$ (see Lemma 3.1 in [Reference Kumjian, Pask, Raeburn and Renault18]), we first define the maps
where $s(\lambda )=s(\mu )$ and $r(\lambda )=r(\mu )=\iota $ . Since $S_\lambda S_\mu ^*=PS_\lambda S_\mu ^*P$ , the maps $\phi _{n,m}$ take values in $PC^*(\Lambda )P$ . We claim that, for any $r\in \mathbb {N}^k$ ,
This is because
so that
and
The maps $\phi _{n,m}$ determine a map $\phi : {}^0\mathcal {O}_{\rho _1,\ldots ,\rho _k}\to PC^*(\Lambda )P$ which is linear, $*$ -preserving and multiplicative. Indeed,
Consider now $T_\lambda T_\mu ^*\in Hom(\rho ^n, \rho ^m),\;\; T_\nu T_\omega ^*\in Hom (\rho ^q,\rho ^p)$ with $s(\lambda )=s(\mu ), s(\nu )=s(\omega ), r(\lambda )=r(\mu )=r(\nu )=r(\omega )=\iota $ . Since, for all $n\in \mathbb {N}^k$ ,
we get
and hence
On the other hand, from Lemma 3.1 in [Reference Kumjian, Pask, Raeburn and Renault18],
and hence
Since $PS_\lambda S_\mu ^*P=\phi _{n,m}(T_\lambda T_\mu ^*)$ if $r(\lambda )=r(\mu )=\iota $ and $s(\lambda )=s(\mu )$ , it follows that $\phi $ is surjective. Injectivity follows from the fact that $\phi $ is equivariant for the gauge action.
Corollary 4.6. If the k-graph $\Lambda $ associated to $\rho _1,\ldots ,\rho _k$ is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, then the Doplicher–Roberts algebra $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$ is simple and purely infinite, and is Morita equivalent with $C^*(\Lambda )$ .
Proof. This follows from the fact that $C^*(\Lambda )$ is simple and purely infinite and because $PC^*(\Lambda )P$ is a full corner.
Remark 4.7. There is a groupoid $\mathcal {G}_\Lambda $ associated to a row-finite rank k graph $\Lambda $ with no sources (see [Reference Kumjian, Pask, Raeburn and Renault18]). By taking the pointed groupoid $\mathcal {G}_\Lambda (\iota )$ , the reduction to the set of infinite paths with range $\iota $ , under the same conditions as in Theorem 4.5, we get an isomorphism of the Doplicher–Roberts algebra $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$ onto $C^*(\mathcal {G}_\Lambda (\iota ))$ .
5 Examples
Example 5.1. Let $G=S_3$ be the symmetric group with $\hat {G}=\{\iota , \epsilon , \sigma \}$ and character table
Here $\iota $ denotes the trivial representation, $\epsilon $ is the sign representation and $\sigma $ is an irreducible $2$ -dimensional representation, for example,
By choosing $\rho _1=\sigma $ on $\mathcal {H}_1=\mathbb {C}^2$ and $\rho _2=\iota +\sigma $ on $\mathcal {H}_2=\mathbb {C}^3$ , we get a product system $\mathcal {E}\to \mathbb {N}^2$ and an action of $S_3$ on $\mathcal {O}(\mathcal {E})\cong \mathcal O_2\otimes \mathcal O_3$ with fixed point algebra $\mathcal {O}(\mathcal {E})^{S_3}\cong \mathcal {O}_{\rho _1,\rho _2}$ isomorphic to a corner of the $C^*$ -algebra of a rank two graph $\Lambda $ . The set of vertices is $\Lambda ^0=\{\iota ,\epsilon , \sigma \}$ and the edges are given by the incidence matrices
This is because
We label the blue (solid) edges by $e_1,\ldots , e_5$ and the red (dashed) edges by $f_1,\ldots ,f_8$ as in the figure below.
The isometric intertwiners are
such that
Here $I_\pi $ is the identity of $\mathcal {H}_\pi $ for $\pi \in \hat {G}$ and $I_i$ is the identity of $\mathcal {H}_i$ for $ i=1,2$ . Since
and
a possible choice of commuting squares is
This data is enough to determine a rank two graph $\Lambda $ associated to $\rho _1, \rho _2$ . But this is not the only choice, since, for example, we could have taken
which determines a different $2$ -graph.
A direct analysis using the definitions shows that, in each case, the $2$ -graph $\Lambda $ is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance. It follows that $C^*(\Lambda )$ is simple and purely infinite and the Doplicher–Roberts algebra $\mathcal {O}_{\rho _1,\rho _2}$ is Morita equivalent with $C^*(\Lambda )$ .
The K-theory of $C^*(\Lambda )$ can be computed using Proposition 3.16 in [Reference Evans11] and it does not depend on the choice of factorization rules. We have
In particular, $\mathcal {O}_{\rho _1,\rho _2}\cong \mathcal {O}_3$ .
On the other hand, since $\rho _1, \rho _2$ are faithful, both Doplicher–Roberts algebras $\mathcal {O}_{\rho _1}, \mathcal {O}_{\rho _2}$ are simple and purely infinite with
so $\mathcal {O}_{\rho _1,\rho _2}\ncong \mathcal {O}_{\rho _1}\otimes \mathcal {O}_{\rho _2}$ .
Example 5.2. With $G=S_3$ and $\rho _1=2\iota , \rho _2=\iota +\epsilon $ , then $R=\{\iota , \epsilon \}$ , so $\Lambda $ has two vertices and incidence matrices
which give
Again, a corresponding choice of isometric intertwiners determines some factorization rules, for example,
Even though $\rho _1, \rho _2$ are not faithful, the obtained $2$ -graph is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, so $\mathcal {O}_{\rho _1,\rho _2}$ is simple and purely infinite with trivial K-theory. In particular, $\mathcal {O}_{\rho _1,\rho _2}\cong \mathcal {O}_2$ .
Note that, since $\rho _1, \rho _2$ have kernel $N=\langle (123)\rangle \cong \mathbb {Z}/3\mathbb {Z}$ , we could replace G by $G/N\cong \mathbb {Z}/2\mathbb {Z}$ and consider $\rho _1,\rho _2$ as representations of $\mathbb {Z}/2\mathbb {Z}$ .
Example 5.3. Consider $G=\mathbb {Z}/2\mathbb {Z}=\{0,1\}$ with $\hat {G}=\{\iota ,\chi \}$ and character table
Choose the $2$ -dimensional representations
which determine a product system $\mathcal {E}$ such that $\mathcal {O}(\mathcal {E})\cong \mathcal {O}_2\otimes \mathcal {O}_2\otimes \mathcal {O}_2$ and a Doplicher–Roberts algebra $\mathcal {O}_{\rho _1,\rho _2,\rho _3}\cong \mathcal {O}(\mathcal {E})^{\mathbb {Z}/2\mathbb {Z}}$ .
An easy computation shows that the incidence matrices of the blue (solid), red (dashed) and green (dotted) graphs are
With labels as in the figure, we choose the following factorization rules.
A tedious verification shows that all the following paths are well defined.
so the associativity property is satisfied and we get a rank three graph $\Lambda $ with two vertices. It is not difficult to check that $\Lambda $ is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, so $C^*(\Lambda )$ is simple and purely infinite.
Since $\partial _1=[I-M_1^t\; I-M_2^t\; I-M_3^t]:\mathbb {Z}^6\to \mathbb {Z}^2$ is surjective, using Corollary 3.18 in [Reference Evans11], we obtain
where
and, in particular, $\mathcal {O}_{\rho _1,\rho _2,\rho _3}\cong \mathcal {O}_2$ .
Example 5.4. Let $G=\mathbb {T}$ . We have $\hat {G}=\{\chi _k:k\in \mathbb {Z}\}$ , where $\chi _k(z)=z^k$ and $\chi _k\otimes \chi _\ell =\chi _{k+\ell }$ . The faithful representations
of $\mathbb {T}$ determine a product system $\mathcal {E}$ with $\mathcal {O}(\mathcal {E})\cong \mathcal {O}_2\otimes \mathcal {O}_2$ and a Doplicher–Roberts algebra $\mathcal {O}_{\rho _1,\rho _2}\cong \mathcal {O}(\mathcal {E})^{\mathbb {T}}$ isomorphic to a corner in the $C^*$ -algebra of a rank $2$ graph $\Lambda $ with $\Lambda ^0=\hat {G}$ and infinite incidence matrices, where
The skeleton of $\Lambda $ looks like
and this $2$ -graph is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, so $C^*(\Lambda )$ is simple and purely infinite.
Example 5.5. Let $G=SU(2)$ . It is known (see page 84 in [Reference Bröcker and tom Dieck2]) that the elements in $\hat {G}$ are labeled by $V_n$ for $n\ge 0$ , where $V_0=\iota $ is the trivial representation on $\mathbb {C}$ , $V_1$ is the standard representation of $SU(2)$ on $\mathbb {C}^2$ , and, for $n\ge 2$ , $V_n=S^nV_1$ , the $n\, $ th symmetric power. In fact, $\dim V_n=n+1$ and $V_n$ can be taken as the representation of $SU(2)$ on the space of homogeneous polynomials p of degree n in variables $z_1,z_2$ , where, for $ g=\big [\begin {smallmatrix}a&b\\c&d\end {smallmatrix}\big ]\in SU(2)$ ,
The irreducible representations $V_n$ satisfy the Clebsch–Gordan formula
If we choose $\rho _1=V_1, \rho _2=V_2$ , then we get a product system $\mathcal {E}$ with $\mathcal {O}(\mathcal {E})\cong \mathcal {O}_2\otimes \mathcal {O}_3$ and a Doplicher–Roberts algebra $\mathcal {O}_{\rho _1,\rho _2}\cong \mathcal {O}(\mathcal {E})^{SU(2)}$ isomorphic to a corner in the $C^*$ -algebra of a rank two graph with $\Lambda ^0=\hat {G}$ and edges given by the matrices
The skeleton looks like
and this $2$ -graph is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance; in particular, $\mathcal {O}_{\rho _1,\rho _2}$ is simple and purely infinite.