Published online by Cambridge University Press: 09 April 2009
In this note we answer the following question: Given C(X) the latticeordered ring of real continuous functions on the compact Hausdorff space X and T an averaging operator on C(X), under what circumstances can X be decomposed into a topological product such that supports a measure m and Tf = h where By an averaging operator we mean a linear transformation T on C(X) such that: 1. T is positive, that is, if f>0 (f(x) ≧ 0 for all x ∈ and f(x) > 0 for some a ∈ X), then Tf>0. 2. T(fTg) = (Tf)(Tg). 3. T l = 1 where l(x) = 1 for all x ∈ X.