Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T07:37:04.187Z Has data issue: false hasContentIssue false

$\unicode[STIX]{x1D6E5}$-CONVERGENCES OF WEIGHTED AVERAGED PROJECTIONS IN $\text{CAT}(\unicode[STIX]{x1D705})$ SPACES

Published online by Cambridge University Press:  14 May 2020

BYOUNG JIN CHOI*
Affiliation:
Department of Mathematics Education,Jeju National University, Jeju63243, Korea

Abstract

We first introduce the weighted averaged projection sequence in $\text{CAT}(\unicode[STIX]{x1D705})$ spaces and then we establish some inequalities for the weighted averaged projection sequence. Using the inequalities, we prove the asymptotic regularity and the $\unicode[STIX]{x1D6E5}$-convergence of the weighted averaged projection sequence. Furthermore, we prove the strong convergence of the sequence under certain regularity or compactness conditions on $\text{CAT}(\unicode[STIX]{x1D705})$ spaces.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by G. Wilkin

The author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2017R1C1B1005334) and the 2020 scientific promotion program funded by Jeju National University.

References

Ariza-Ruiz, D., López-Acedo, G. and Nicolae, A., ‘The asymptotic behavior of the composition of firmly nonexpansive mappings’, J. Optim. Theory Appl. 167 (2015), 409429.Google Scholar
Auslender, A., ‘Méthodes numériques pour la résolution des problèmes d’optimisation avec constraintes’, Thèse, Faculté des Sciences, Université de Grenoble, 1969.Google Scholar
Bačák, M., Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22 (De Gruyter, Berlin, 2014).Google Scholar
Bačák, M., Searston, I. and Sims, B., ‘Alternating projections in CAT(0) spaces’, J. Math. Anal. Appl. 385 (2012), 599607.Google Scholar
Bauschke, H. H. and Borwein, J. M., ‘On projection algorithms for solving convex feasibility problems’, SIAM Rev. 38 (1996), 367426.Google Scholar
Bauschke, H. H., Matoušková, E. and Reich, S., ‘Projection and proximal point methods: convergence results and counterexamples’, Nonlinear Anal. 56 (2004), 715738.Google Scholar
Bhatia, R., Positive Definite Matrices, Princeton Series in Applied Mathematics (Princeton University Press, Princeton, NJ, 2007).Google Scholar
Brègman, L. M., ‘Finding the common point of convex sets by the method of successive projection’, Dokl. Akad. Nauk SSSR 162 (1965), 487490; (in Russian); English transl. in Sov. Math. Dokl. 6 (1965), 688–692.Google Scholar
Bridson, M. R. and Haefliger, A., Metric Spaces of Non-positive Curvature, Fundamental Principles of Mathematical Sciences, 319 (Springer, Berlin, 1999).Google Scholar
Choi, B. J., ‘Convergence of Mann’s alternating projections in CAT(𝜅) spaces’, Bull. Aust. Math. Soc. 98 (2018), 134143.Google Scholar
Choi, B. J., Ji, U. C. and Lim, Y., ‘Convergences of alternating projections in CAT(𝜅) spaces’, Constr. Approx. 47 (2018), 391405.Google Scholar
Choi, B. J., Ji, U. C. and Lim, Y., ‘Convex feasibility problems on uniformly convex metric spaces’, Optim. Methods Softw. 35 (2020), 2136.Google Scholar
Combettes, P. L., ‘Hilbertian convex feasibility problem: convergence of projection methods’, Appl. Math. Optim. 35 (1997), 311330.Google Scholar
Espínola, R. and Fernández-León, A., ‘CAT(𝜅)-spaces, weak convergence and fixed points’, J. Math. Anal. Appl. 353 (2009), 410427.Google Scholar
He, J. S., Fang, D. H., López, G. and Li, C., ‘Mann’s algorithm for nonexpansive mappings in CAT(𝜅) spaces’, Nonlinear Anal. 75 (2012), 445452.Google Scholar
Hundal, H. S., ‘An alternating projection that does not converge in norm’, Nonlinear Anal. 57 (2004), 3561.Google Scholar
Kirk, W. A. and Panyanak, B., ‘A concept of convergence in geodesic spaces’, Nonlinear Anal. 68 (2008), 36893696.Google Scholar
Kuwae, K., ‘Jensen’s inequality on convex spaces’, Calc. Var. Partial Differential Equations 49 (2014), 13591378.Google Scholar
Lim, T. C., ‘Remarks on some fixed point theorems’, Proc. Amer. Math. Soc. 60 (1976), 179182.Google Scholar
Ohta, S., ‘Convexities of metric spaces’, Geom. Dedicata 125 (2007), 225250.Google Scholar
von Neumann, J., Functional Operators II: The Geometry of Orthogonal Spaces, Annals of Mathematics Studies, 22 (Princeton University Press, Princeton, NJ, 1950), reprint of Mimeographed Lecture Notes first distributed in 1933.Google Scholar