Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T11:27:51.301Z Has data issue: false hasContentIssue false

CHEBYSHEV SUBSETS OF A HILBERT SPACE SPHERE

Published online by Cambridge University Press:  21 November 2019

THEO BENDIT*
Affiliation:
University of Newcastle, Australia email [email protected]

Abstract

The Chebyshev conjecture posits that Chebyshev subsets of a real Hilbert space $X$ are convex. Works by Asplund, Ficken and Klee have uncovered an equivalent formulation of the Chebyshev conjecture in terms of uniquely remotal subsets of $X$. In this tradition, we develop another equivalent formulation in terms of Chebyshev subsets of the unit sphere of $X\times \mathbb{R}$. We characterise such sets in terms of the image under stereographic projection. Such sets have superior structure to Chebyshev sets and uniquely remotal sets.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asplund, E., ‘Čebyšev sets in Hilbert space’, Trans. Amer. Math. Soc. 144 (1969), 235240.Google Scholar
Balaganskiĭ, V. S. and Vlasov, L. P., ‘The problem of the convexity of Chebyshev sets’, Uspekhi Mat. Nauk 51(6(312)) (1996), 125188.Google Scholar
Bunt, L., ‘Bijdrage tot de theorie der konvekse puntverzamelingen’, PhD Thesis, University of Groningen, Amsterdam, 1934.Google Scholar
Efimov, N. V. and Stečkin, S. V., ‘Čebyšev sets in Banach spaces’, Dokl. Akad. Nauk SSSR 121 (1958), 582585.Google Scholar
Fletcher, J. and Moors, W. B., ‘Chebyshev sets’, J. Aust. Math. Soc. 98(2) (2015), 161231.Google Scholar
Johnson, G. G., ‘A nonconvex set which has the unique nearest point property’, J. Approx. Theory 51(4) (1987), 289332.Google Scholar
Kelly, B. F., ‘The convexity of Chebyshev sets in finite dimensional normed linear spaces’, Master’s Thesis, The Pennsylvania State University, 1978.Google Scholar
Klee, V., ‘Convexity of Chebyshev sets’, Math. Ann. 142(6) (1961), 292304.Google Scholar
Kritikos, N., ‘Sur quelques propriétés des ensembles convexes’, Bull. Math. Soc. Sci. Math. Roumanie 40(1–2) (1938), 8792.Google Scholar
Motzkin, T. S., ‘Sur quelques propriétés caractéristiques des ensembles bornés non convexes’, Rend. Acad. dei Lincei (Roma) 21(6) (1935), 773779.Google Scholar