Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T04:40:31.473Z Has data issue: false hasContentIssue false

Rational Pavelka predicate logic is a conservative extension of Łukasiewicz predicate logic

Published online by Cambridge University Press:  12 March 2014

Petr Hájek
Affiliation:
Institute of Computer Science, Academy of Sciences, 18207 Prague, Czech Republic, E-mail: [email protected]
Jeff Paris
Affiliation:
Department of Mathematics, University of Manchester, Manchester M13 9PL, UK, E-mail: [email protected]
John Shepherdson
Affiliation:
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK, E-mail: [email protected]

Abstract

Rational Pavelka logic extends Łukasiewicz infinitely valued logic by adding truth constants r̄ for rationals in [0. 1]. We show that this is a conservative extension. We note that this shows that provability degree can be defined in Łukasiewicz logic. We also give a counterexample to a soundness theorem of Belluce and Chang published in 1963.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Anderson, M. and Feil, T., Lattice-ordered groups, D. Reidel, 1988.CrossRefGoogle Scholar
[2]Belluce, L. P. and Chang, C. C., A weak completeness theorem for infinite valuedfirst-order logic, this Journal, vol. 28 (1963), pp. 4350.Google Scholar
[3]Bigard, A., Keimel, S., and Wolfenstein, S., Groupes et anneaux reticules, Lecture Notes in Mathematics, vol. 608, Springer-Verlag, 1977.CrossRefGoogle Scholar
[4]Chang, C. C., Proof of an Axiom of Łukasiewicz, Transactions of the American Mathematical Society, vol. 87 (1958), pp. 5556.Google Scholar
[5]Fuchs, L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.Google Scholar
[6]Hájek, P., Fuzzy logic from the logical point of view, SOFSEM'95: Theory and Practice of Informatics (Bartošek, M., Staudek, J., and Wiedermann, J., editors), Lecture Notes in Computer Science 1012 (Milovy, Czech Republic, 1995), Springer-Verlag, pp. 3149.CrossRefGoogle Scholar
[7]Hájek, P., Fuzzy logic and arithmetical hierarchy II, Studio Logica, vol. 58 (1997), pp. 129141.CrossRefGoogle Scholar
[8]Hájek, P., Metamathematics of fuzzy logic, Kluwer, 1998.CrossRefGoogle Scholar
[9]McNaughton, R., A theorem about infinite-valued sentential logic, this Journal, vol. 16 (1951), pp. 113.Google Scholar
[10]Meredith, C. A., The dependence of an axiom of Łukasiewicz, Transactions of the American Mathematical Society, vol. 87 (1958), p. 54.Google Scholar
[11]Mundici, D., Interpretation of AF C*-Algebras in Lukasiewicz Sentential Calculus, Journal of Functional Analysis, vol. 65 (1986), pp. 1563.CrossRefGoogle Scholar
[12]Noväk, J., On the syntactico-semantical completeness of first-order fuzzy logic, I, II, Kybernetika, vol. 26 (1990), pp. 47–66, 134152.Google Scholar
[13]Pavelka, J., On fuzzy logic I, II, III, Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, vol. 25 (1979), pp. 45–52, 119–134, 447464.CrossRefGoogle Scholar
[14]Ragaz, M., Arithmetische Klassifikation von Formelnmengen der unendlichwertigen Logik, Thesis, ETH Zürich, 1981.Google Scholar
[15]Rose, A. and Rosser, J. B., Fragments of many-valued calculi, Transactions of the American Mathematical Society, vol. 87 (1958), pp. 153.CrossRefGoogle Scholar
[16]Scarpellini, B., Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz, this Journal, vol. 27 (1962), pp. 159170.Google Scholar
[17]Tarski, A., Logic, Semantics, Metamathematics, Oxford University Press, 1956.Google Scholar