Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T11:37:44.241Z Has data issue: false hasContentIssue false

PCF structures of height less than ω3

Published online by Cambridge University Press:  12 March 2014

Karim Er-rhaimini
Affiliation:
Équipe de Logique, Université Paris7 Diderot, Site Chevaleret 75205, Paris Cedex 13, France. E-mail: [email protected], URL: http://www.logique.jussieu.fr/~boban
Boban Veličković
Affiliation:
Équipe de Logique, Université Paris 7 Diderot, Site Chevaleret 75205, Paris Cedex 13, France. E-mail: [email protected], URL: http://www.logique.jussieu.fr/~boban

Abstract

We show that it is relatively consistent with ZFC to have PCF structures of height δ, for all ordinals δ < ω3.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abraham, U., Proper forcing, Handbook of set theory (Foreman, M. and Kanamori, A., editors), Springer-Verlag, Berlin, New York, 2010.Google Scholar
[2]Abraham, U. and Magidor, M., Cardinal arithmetic, Handbook of set theory (Foreman, M. and Kanamori, A., editors), Springer-Verlag, Berlin, New York, 2010.Google Scholar
[3]Abraham, U. and Shelah, S., Forcing closed unbounded sets, this Journal, vol. 48 (1983). no. 3. pp. 643657.Google Scholar
[4]Bagaria, J., Locally-generic Boolean algebras and cardinal sequences, Algebra Universalis, vol. 47 (2002), no. 3, pp. 283302.CrossRefGoogle Scholar
[5]Baumgartner, J.E. and Shelah, S., Remarks on superatomic Boolean algebras, Annals of Pure and Applied Logic, vol. 33 (1987), no. 2, pp. 109129.CrossRefGoogle Scholar
[6]Burke, M.R. and Magidor, M., Shelah's pcf theory and its applications, Annals of Pure and Applied Logic, vol. 50 (1990), no. 3, pp. 207254.CrossRefGoogle Scholar
[7]Gitik, M. and Magidor, M., The singular cardinals hypothesis revisited, Set theory of the continuum (Berkeley, CA, 1989) (Judah, H., Just, W., and Woodin, W. H., editors). Mathematical Sciences Research Institute Publications, vol. 26, Springer-Verlag, Berlin, New York, 1992, pp. 243279.CrossRefGoogle Scholar
[8]Jech, T., Set theory, the third millennium, revised and expanded ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.Google Scholar
[9]Jech, T. and Shelah, S., Possible pcf algebras, this Journal, vol. 61 (1996), no. 1, pp. 313317.Google Scholar
[10]Kunen, K., Set theory, North-Holland New York, 1980.Google Scholar
[11]Martínez, J. C., A forcing construction of thin-tall Boolean algebras, Fundamenta Mathematicae, vol. 159 (1999), pp. 99113.CrossRefGoogle Scholar
[12]Ruyle, J. C., Cardinal sequences of PCF structures, Ph.D. thesis, University of California, Irvine, 1998.Google Scholar
[13]Shelah, S., Cardinal arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994.CrossRefGoogle Scholar
[14]Soukup, L., A lifting theorem on forcing LCS spaces, More sets, graphs and numbers (Györi, E., Katona, G., and Lovász, L., editors), Bolyai Society Mathematical Studies, vol. 15, Springer-Verlag, Berlin, New York, 2006, pp. 341358.CrossRefGoogle Scholar
[15]Todorcevic, S., Walks on ordinals and their characteristics, Progress in Mathematics, vol. 263. Birkhäuser Verlag AG, 2007.CrossRefGoogle Scholar
[16]Veličković, B., Forcing axioms and stationary sets, Advances in Mathematics, vol. 94 (1992), no. 2, pp. 256284.CrossRefGoogle Scholar