Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T22:38:36.361Z Has data issue: false hasContentIssue false

Categoricity and ranks

Published online by Cambridge University Press:  12 March 2014

Jürgen Saffe*
Affiliation:
Institut fur Mathematik, Universität Hannover, Hannover, Germany
*
Hegelstrasse 6, 3150 Peine, West Germany

Abstract

In this paper we investigate the connections between categoricity and ranks. We use stability theory to prove some old and new results.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Ba1]Baldwin, J. T., αT is finite for ℵ1-categorical T, Transactions of the American Mathematical Society, vol. 181 (1973), pp. 3753.Google Scholar
[Ba2]Baldwin, J. T., Stable theories (in preparation).Google Scholar
[CHL]Cherlin, G., Harrington, L. and Lachlan, A. H., 0-categorical, ℵ0-stable theories (to appear).Google Scholar
[La]Lachlan, A. H., Singular properties of Morley rank, Fundamenta Mathematicae, vol. 108 (1980), pp. 145157.CrossRefGoogle Scholar
[Ls1]Lascar, D., Ranks and definability in superstate theories, Israel Journal of Mathematics, vol. 23 (1976), pp. 5387.CrossRefGoogle Scholar
[Ls2]Lascar, D., Ordre de Rudin-Keisler et poids dans les théories superstables, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 28 (1982), pp. 413430.CrossRefGoogle Scholar
[Ls3]Lascar, D., Notes on “Classification Theory” (in preparation).Google Scholar
[LP]Lascar, D. and Poizat, B., An introduction to forking, this Journal, vol. 44(1979), pp. 330350.Google Scholar
[Ma]Makkai, M., A survey of basic stability theory (to appear).Google Scholar
[Po1]Poizat, B., Déviation des types, Thèse, Paris, 1977.Google Scholar
[Po2]Poizat, B. (editor), Groupe d'étude de théories stables. Vols. 1, 2, 3, Secrétariat Mathématique, Paris, 1978, 1981, 1983.Google Scholar
[Sf]Saffe, J., Einige Ergebnisse über die Anzahl abzählbarer Modelle superstabiler Theorien, Dissertation, Hannover, 1981.Google Scholar
[Sh1]Shelah, S., Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1978.Google Scholar
[Sh2]Shelah, S., The spectrum problem. I, II, Israel Journal of Mathematics, vol. 43 (1982), pp. 324–356, 357364; III, IV (to appear).CrossRefGoogle Scholar