Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T22:41:53.315Z Has data issue: false hasContentIssue false

◇ at Mahlo cardinals

Published online by Cambridge University Press:  12 March 2014

Martin Zeman*
Affiliation:
Institut für Mathematik†, Mathematisch-Naturwissenschaftliche Fakultät II, Humboldt Universitätzu Berlin, Unter den Linden 6, 10099 Berlin, Germany

Abstract

Given a Mahlo cardinal k and a regular ε such that ω1 < ε < k we show that ◇k(cf = ε) holds in V provided that there are only non-stationarily many β < k with o(β) ≥ ε in K.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Cu95]Cummings, J., Woodin's theorem on killing diamonds via Radin forcing, unpublished.Google Scholar
[De84]Devlin, K. J., Constructibility, Springer, 1984.CrossRefGoogle Scholar
[Gi96a]Gitik, M., Blowing up the power of a singular cardinal, Annals of Pure and Applied Logic, vol. 80 (1996), pp. 1733.CrossRefGoogle Scholar
[Gi96]Gitik, M., On hidden extenders, Archive for Mathematical Logic, vol. 35 (1996), pp. 349369.CrossRefGoogle Scholar
[Ha92]Hauser, K., Indescribable cardinals without diamonds, Archive for Mathematical Logic, vol. 31 (1992), pp. 373383.CrossRefGoogle Scholar
[JC78]Jech, T., Set theory, Academic Press, 1978.Google Scholar
[Je?a]Jensen, R. B., Nonoverlapping extenders, Handwritten notes, Oxford.Google Scholar
[Je72]Jensen, R. B., The fine structure of the constructible hierarchy, Annals of Mathematical Logic, vol. 4 (1972), pp. 229308.CrossRefGoogle Scholar
[Je88]Jensen, R. B., Measures of order 0, Handwritten notes, Oxford, 1988.Google Scholar
[Je91]Jensen, R. B., Diamond at Mahlo cardinals, handwritten notes, Oberwolfach, 1991.Google Scholar
[Je97]Jensen, R. B., A new fine structure for mice below one Woodin cardinal, Handwritten notes. Berlin, 1997.Google Scholar
[JK??]Jensen, R. B. and Kunen, K., Handwritten notes.Google Scholar
[JZ]Jensen, R. B. and Zeman, M., Smooth categories and global □, Annals of Pure and Applied Logic, vol. 102 (2000), pp. 101138.CrossRefGoogle Scholar
[Mi87]Mitchell, W. J., Applications of the core model for sequences of measures, Transactions of the American Mathematical Society, vol. 299 (1987), pp. 4158.CrossRefGoogle Scholar
[Mi92]Mitchell, W. J., On the singular cardinal hypothesis, Transactions of the American Mathematical Society, vol. 329 (1992), pp. 507530.CrossRefGoogle Scholar
[MG96]Mitchell, W. J. and Gitik, M., Indiscernible sequences for extenders and the singular cardinal hypothesis, Annals of Pure and Applied Logic, vol. 82 (1996), pp. 273316.Google Scholar
[MSS]Mitchell, W. J., Schimmerling, E., and Steel, J. R., The covering lemma up to a Woodin cardinal, Annals of Pure and Applied Logic, vol. 84 (1997), pp. 219255.CrossRefGoogle Scholar
[Ze?]Zeman, M., Inner models and strong cardinals, in preparation.Google Scholar
[Ze97]Zeman, M., Ph.D. thesis, HU Berlin, 1997.Google Scholar