Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T10:15:03.229Z Has data issue: false hasContentIssue false

Properly enumeration degrees and the high/low hierarchy

Published online by Cambridge University Press:  12 March 2014

Matthew Giorgi
Affiliation:
Dipartimento di Scienze Matematiche ed Informatiche, “Roberto Magari”, Pian dei Mantellini 44, 53100 Siena, Italy, E-mail: [email protected]
Andrea Sorbi
Affiliation:
Dipartimento di Scienze Matematiche ed Informatiche, “Roberto Magari”, Pian dei Mantellini 44, 53100 Siena, Italy, E-mail: [email protected]
Yue Yang
Affiliation:
Department of Mathematics, Faculty of Science, National University of Singapore, Lower Kent Ridge Road, Singapore, 119260, E-mail: [email protected]

Abstract

We show that there exist downwards properly (in fact noncuppable) e-degrees that are not high. We also show that every high e-degree bounds a noncuppable e-degree.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bereznyuk, S., Coles, R., and Sorbi, A., The distribution of properly enumeration degrees, this Journal, vol. 65 (2000), no. 1, pp. 1932.Google Scholar
[2]Cooper, S. B., Enumeration reducibility, nondeterministic computations and relative computability of partial functions, Recursion Theory Week, Oberwolfach 1989 (Ambos-Spies, K., Müller, G., and Sacks, G. E., editors), Lecture Notes in Mathematics, vol. 1432, Springer-Verlag, Heidelberg, 1990, pp. 57110.Google Scholar
[3]Cooper, S. B. and Copestake, C. S., Properly ∑2 enumeration degrees, Zeitschrift für Mathematische Logik and Grundlagen der Mathematik, vol. 34 (1988), pp. 491522.CrossRefGoogle Scholar
[4]Cooper, S. B., Sorbi, A., and Yi, X., Cupping and noncupping in the enumeration degrees of sets, Annals of Pure and Applied Logic, vol. 82 (1997), pp. 317342.CrossRefGoogle Scholar
[5]Dekker, J. C. E., A theorem on hypersimple sets, Proceedings of the American Mathematical Society, vol. 5 (1954), pp. 791796.CrossRefGoogle Scholar
[6]Giorgi, M. B., A high noncuppable e-degree, to appear in the Archive for Mathematical Logic.Google Scholar
[7]Griffiths, E., Limit lemmas and jump inversion in the enumeration degrees, Archive for Mathematical Logic, vol. 42 (2003), no. 6.CrossRefGoogle Scholar
[8]Gutteridge, L., Some results on enumeration reducibility, Ph.D. thesis, Simon Fraser University, 1971.Google Scholar
[9]McEvoy, K., The structure of the enumeration degrees, Ph.D. thesis, School of Mathematics, University of Leeds, 1984.Google Scholar
[10]McEvoy, K. and Cooper, S. B., On minimal pairs of enumeration degrees, this Journal, vol. 50 (1985), pp. 9831001.Google Scholar
[11]Nies, A. and Sorbi, A., Structural properties and enumeration degrees, this Journal, vol. 65 (2000), no. 1, pp. 285292.Google Scholar
[12]Sacks, G. E., Recursive enumerability and the jump operator, Transactions of the American Mathematical Society, vol. 108 (1963), pp. 223239.CrossRefGoogle Scholar
[13]Shore, R. and Sorbi, A., Jumps of high e-degrees and properly e-degrees, Recursion theory and complexity (Arslanov, M. and Lempp, S., editors), de Gruyter Series in Logic and its Applications, W. De Gruyter, Berlin, New York, 1999, pp. 157172.CrossRefGoogle Scholar
[14]Soare, R. I., Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Omega Series, Springer-Verlag, Heidelberg, 1987.CrossRefGoogle Scholar
[15]Sorbi, A., The enumeration degrees of thel sets, Complexity, logic and recursion theory (Sorbi, A., editor), Marcel Dekker, New York, 1997, pp. 303330.Google Scholar