Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T02:54:02.410Z Has data issue: false hasContentIssue false

On the interpretation of non-finitist proofs—Part I

Published online by Cambridge University Press:  12 March 2014

G. Kreisel*
Affiliation:
The University, Reading, England

Extract

1. The purpose of the present paper is to formulate the problem of non-finitist proofs, and to solve it for certain extensions of the predicate calculus, and for analysis with the exclusion of the theory of sets of points. The corresponding problem for general formal systems is discussed in another publication [1].

To fix ideas we introduce the problem by examples from analysis. The general formulation is given in the text. Also, we shall use in the introduction the concepts decidable, verifiable, finitist without much formal explanation, because the reader is probably familiar with them, and they are defined early on in the text.

The paper presupposes some knowledge of the methods and results in the theory of proofs. These enable one to state the general problem rather more precisely.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Kreisel, G., On the concepts of completeness and interpretation of formal systems (forthcoming).Google Scholar
[2]Hilbert, D. and Bernats, P., Grundlagen der Mathematik, vol. I (1934) and vol. II (1939), Berlin.Google Scholar
[3]Ackermann, W., Zur Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, vol. 117 (1940), pp. 162194.CrossRefGoogle Scholar
[4]Ingham, A. E., The distribution of prime numbers, Cambridge, 1932.Google Scholar
[5]Littlewood, J. E., Large numbers, Mathematical gazette, vol. 32 (1948), pp. 163171.CrossRefGoogle Scholar
[6]Ackermann, W., Begründung des “tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit, Mathematische Annalen, vol. 93 (1925), pp. 136.CrossRefGoogle Scholar
[7]von Neumann, J., Zur Hilbertschen Beweistheorie, Mathematische Zeitschrift, vol. 26 (1927), pp. 146.CrossRefGoogle Scholar
[8]Péter, R., Über die mehrfache Rekursion, Mathematische Annalen, vol. 113 (1936), pp. 489527.CrossRefGoogle Scholar
[9]Titchmarsh, E. C., The zeta-function of Riemann, Cambridge, 1930.Google Scholar
[10]Gentzen, G., Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, vol. 112 (1936), pp. 493565.CrossRefGoogle Scholar
[11]Gödel, K., Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines mathematischen Kolloquiums, Heft 4 (1933), pp. 3438.Google Scholar
[12]Gentzen, G., Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Neue Folge, Heft 4 (1938), pp. 1944.Google Scholar