Published online by Cambridge University Press: 12 March 2014
For sets of natural numbers A and B, A is enumeration reducible to B if there is some effective algorithm which when given any enumeration of B will produce an enumeration of A. Gutteridge [5] has shown that in the upper semilattice of the enumeration degrees there are no minimal degrees (see Cooper [3]), and in this paper we study those pairs of degrees with gib 0. Case [1] constructed a minimal pair. This minimal pair construction can be relativised to any gib, and following a suggestion of Jockusch we can also fix one of the degrees and still construct the pair. These methods yield an easier proof of Case's exact pair theorem for countable ideals. 0″ is an upper bound for the minimal pair constructed in §1, and in §2 we improve this bound to any Σ2-high Δ2 degree. In contrast to this we show that every low degree c bounds a degree a which is not in any minimal pair bounded by c. The structure of the co-r.e. e-degrees is isomorphic to that of the r.e. Turing degrees, and Gutteridge has constructed co-r.e. degrees which form a minimal pair in the e-degrees. In §3 we show that if a, b is any minimal pair of co-r.e. degrees such that a is low then a, b is a minimal pair in the e-degrees (and so Gutteridge's result follows). As a corollary of this we can embed any countable distributive lattice and the two nondistributive five-element lattices in the e-degrees below 0′. However the lowness assumption is necessary, as we also prove that there is a minimal pair of (high) r.e. degrees which is not a minimal pair in the e-degrees (under the isomorphism). In §4 we present more concise proofs of some unpublished work of Lagemann on bounding incomparable pairs and embedding partial orderings.
As usual, {Wi}i ∈ ω is the standard listing of the recursively enumerable sets, Du is the finite set with canonical index u and {‹ m, n ›}m, n ∈ ω is a recursive, one-to-one coding of the pairs of numbers onto the numbers. Capital italic letters will be variables over sets of natural numbers, and lower case boldface letters from the beginning of the alphabet will vary over degrees.