Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T03:38:39.119Z Has data issue: false hasContentIssue false

Disjunction and existence under implication in elementary intuitionistic formalisms

Published online by Cambridge University Press:  12 March 2014

S. C. Kleene*
Affiliation:
The University of Wisconsin

Extract

Let Pp, Pd, and N be the intuitionistic formal systems of prepositional calculus, predicate calculus, and elementary number theory, respectively.1 Consider the following six propositions.8

(1) ├A V B only if ├A or ├B.

(2) ├∋xA(x) only if ├Ã(t) for some formula Ã(x) congruent to A(x) and some term t free for x in Ã(x).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Gentzen, Gerhard, Untersuchungen über das logische Schliessen, Mathematische Zeitschrift, vol. 39 (19341935), pp. 176210, 405–431.CrossRefGoogle Scholar
[2]Gödel, Kurt, Zum intuitionistischen Aussagenkalkül, Akademie der Wissenschaften in Wien, Mathematisch-naturwissenschaftliche Klasse, Anzeiger, vol. 69 (1932), pp. 6566, reprinted in Ergebnisse eines mathematischen Kolloquiums, Heft 4 (for 1931–2, pub. 1933), p. 40.Google Scholar
[3]Harrop, R., On disjunctions and existential statements in intuitionistic systems of logic, Mathematische Annalen, vol. 132 (1956), pp. 347361.CrossRefGoogle Scholar
[4]Harrop, Ronald, Concerning formulas of the types A→BVC, A-→(Ex)B(x) in intuitionistic formal systems, this Journal, vol. 25 (1960), pp. 2732.Google Scholar
[5]Heyting, A., Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, no. 4, Berlin (Springer), 1934, IV + 73 pp.Google Scholar
[6]Kleene, S. C., On the interpretation of intuitionistic number theory, this Journal, vol. 10 (1945), pp. 109124.Google Scholar
[7]Kleene, Stephen Cole, Introduction to metamathematics, Amsterdam (North Holland), Groningen (Noordhoff), New York and Toronto (Van Nostrand), 1952, X + 550 pp.Google Scholar
[8]Kreisel, G., The non-derivability of ¬(x)A(x) → (Ex)¬A(x), A primitive recursive, in intuitionistic formal systems (abstract), this Journal, vol. 23 (1958), pp. 456457.Google Scholar
[9]Kreisel, G. and Putnam, H., Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkül, Archiv für mathematische Logik und Grundlagenforschung, vol. 3 nos. 3–4 (1957), pp. 7478.CrossRefGoogle Scholar
[10]Rasiowa, H., Constructive theories, Bulletin de l'Académie Polonaise des Sciences, Classe III, vol. 2 (1954), pp. 121124.Google Scholar
[11]Rasiowa, H., Algebraic models of axiomatic theories, Fundamenta mat he-maticae, vol. 41 (1954), pp. 291310.CrossRefGoogle Scholar
[12]Rose, G. F., Propositional calculus and realizability, Transactions of the American Mathematical Society, vol. 75 (1953), pp. 119.CrossRefGoogle Scholar