We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
http://www.editorialmanager.com/jrp/default.aspx.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Variation in delineation of target volumes/organs at risk (OARs) is well recognised in radiotherapy and may be reduced by several methods including teaching. We evaluated the impact of teaching on contouring variation for thoracic/pelvic stereotactic ablative radiotherapy (SABR) during a virtual contouring workshop.
Materials and methods:
Target volume/OAR contours produced by workshop participants for three cases were evaluated against reference contours using DICE similarity coefficient (DSC) and line domain error (LDE) metrics. Pre- and post-workshop DSC results were compared using Wilcoxon signed ranks test to determine the impact of teaching during the workshop.
Results:
Of 50 workshop participants, paired pre- and post-workshop contours were available for 21 (42%), 20 (40%) and 22 (44%) participants for primary lung cancer, pelvic bone metastasis and pelvic node metastasis cases, respectively. Statistically significant improvements post-workshop in median DSC and LDE results were observed for 6 (50%) and 7 (58%) of 12 structures, respectively, although the magnitude of DSC/LDE improvement was modest in most cases. An increase in median DSC post-workshop ≥0·05 was only observed for GTVbone, IGTVlung and SacralPlex, and reduction in median LDE > 1 mm was only observed for GTVbone, CTVbone and SacralPlex. Post-workshop, median DSC values were >0·7 for 75% of structures. For 92% of the structures, post-workshop contours were considered to be acceptable or within acceptable variation following review by the workshop faculty.
Conclusions:
This study has demonstrated that virtual SABR contouring training is feasible and was associated with some improvements in contouring variation for multiple target volumes/OARs.
The purpose of this study was to estimate technical treatment accuracy in fractionated stereotactic radiosurgery (fSRS) using the Extend™ system (ES) of Gamma Knife (GK).
Methods and materials:
The fSRS with GK relies on a re-locatable ES where the reference treatment position is estimated using repositioning check tool (RCT). A patient surveillance unit (PSU) monitors the head and neck movement of the patient during treatment and imaging. The quality assurance test of RCT was performed to evaluate a standard error (SE) associated with a measurement tool called digital probe. A ‘4-mm collimator shot’ dose plan for a head–neck phantom was investigated using EBT3 films. CT and MR distortion measurement studies were combined to evaluate SEimaging. The combined uncertainty from all measurements was evaluated using statistical methods, and the resultant treatment accuracy was investigated for the ES.
Results:
Four sets of RCT measurements and 20 observations of associated digital probe showed SERCT of ±0·0186 mm and SEdigital probe of ±0·0002 mm. The mean positional shift of 0·2752 mm (σ = 0·0696 mm) was observed for 20 treatment settings of the phantom. The differences between radiological and predefined isocentres were 0·4650 and 0·4270 mm for two independent experiments. SEimaging and SEdiode tool were evaluated as ±0·1055 and ±0·0096 mm, respectively. An expanded uncertainty of ±0·2371 mm (at 95% confidence level) was observed with our system.
Conclusions:
The combined result of the positional shift and expanded uncertainty showed close agreement with film investigations.
The aim of this study was to assess which machine, Radixact or CyberKnife, can deliver better treatment for lung and prostate stereotactic body radiation therapy (SBRT) with the use of Synchrony® real-time motion tracking system. Ten and eight patients treated with lung and prostate SBRT, respectively, using the CyberKnife system were selected for the assessment. For each patient, a retrospective Radixact plan was created and compared with the original CyberKnife plan. There was no statistically significant difference in the new conformity index of the Radixact plans and that of the Cyberknife plans in both lung and prostate SBRT. The average homogeneity index in the Radixact plans was better in both lung and prostate SBRT with statistical significance (p = 0·04 for lung and p = 0·02 for prostate). In lung SBRT, the dose to lungs was lower in Cyberknife plans (p = 0·002). In prostate SBRT, there was no statistically significant difference in organs at risk sparing between Cyberknife plans and Radixact plans. In conclusion, CyberKnife was better in lung SBRT while Radixact was better in prostate SBRT.
Peer review is an essential quality assurance component of radiation therapy planning. A growing body of literature has demonstrated substantial rates of suggested plan changes resulting from peer review. There remains a paucity of data on the impact of peer review rounds for stereotactic body radiation therapy (SBRT). We therefore aim to evaluate the outcomes of peer review in this specific patient cohort.
Methods and materials:
We conducted a retrospective review of all SBRT cases that underwent peer review from July 2015 to June 2018 at a single institution. Weekly peer review rounds are grouped according to cancer subsite and attended by radiation oncologists, medical physicists and medical radiation technologists. We prospectively compiled ‘learning moments’, defined as cases with suggested changes or where an educational discussion occurred beyond routine management, and critical errors, defined as errors which could alter clinical outcomes, recorded prospectively during peer review. Plan changes implemented after peer review were documented.
Results:
Nine hundred thirty-four SBRT cases were included. The most common treatment sites were lung (518, 55%), liver (196, 21%) and spine (119, 13%). Learning moments were identified in 161 cases (17%) and translated into plan changes in 28 cases (3%). Two critical errors (0.2%) were identified: an inadequate planning target volume margin and an incorrect image set used for contouring. There was a statistically significantly higher rate of learning moments for lower-volume SBRT sites (defined as ≤30 cases/year) versus higher-volume SBRT sites (29% vs 16%, respectively; p = 0.001).
Conclusions:
Peer review for SBRT cases revealed a low rate of critical errors, but did result in implemented plan changes in 3% of cases, and either educational discussion or suggestions of plan changes in 17% of cases. All SBRT sites appear to benefit from peer review, though lower-volume sites may require particular attention.
The objective of this article is to evaluate the dosimetric efficacy of volumetric modulated arc therapy (VMAT) in comparison to dynamic conformal arc therapy (DCAT) and 3D conformal radiotherapy (3DCRT) for very small volume (≤1 cc) and small volume (≤3 cc) tumours for flattened (FF) and unflattened (FFF) 6 MV beams.
Materials and methods:
A total of 21 patients who were treated with single-fraction stereotactic radiosurgery, using either VMAT, DCAT or 3DCRT, were included in this study. The volume categorisation was seven patients each in <1, 1–2 and 2–3 cc volume. The treatment was planned with 6 MV FF and FFF beams using three different techniques: VMAT/Rapid Arc (RA) (RA_FF and RA_FFF), dynamic conformal arc therapy (DCA_FF and DCA_FFF) and 3DCRT (Static_FF and Static_FFF). Plans were evaluated for target coverage (V100%), conformity index, homogeneity index, dose gradient for 50% dose fall-off, total MU and MU/dose ratio [intensity-modulated radiotherapy (IMRT) factor], normal brain receiving >12 Gy dose, dose to the organ at risk (OAR), beam ON time and dose received by 12 cc of the brain.
Result:
The average target coverage for all plans, all tumour volumes (TVs) and delivery techniques is 96·4 ± 4·5 (range 95·7 ± 6·1–97·5 ± 2·9%). The conformity index averaged over all volume ranges <1, 2, 3 cc> varies between 0·55 ± 0·08 and 0·68 ± 0·04 with minimum and maximum being exhibited by DCA_FFF for 1 cc and Static_FFF/RA_FFF for 3 cc tumours, respectively. Mean IMRT factor averaged over all volume ranges for RA_FF, DCA_FF and Static_FF are 3·5 ± 0·8, 2·0 ± 0·2 and 2·0 ± 0·2, respectively; 50% dose fall-off gradient varies in the range of 0·33–0·42, 0·35–0·40 and 0·38–0·45 for 1, 2 and 3 cc tumours, respectively.
Conclusion:
This study establishes the equivalence between the FF and FFF beam models and different delivery techniques for stereotactic radiosurgery in small TVs in the range of ≤1 to ≤3 cc. Dose conformity, heterogeneity, dose fall-off characteristics and OAR doses show no or very little variation. FFF could offer only limited time advantage due to excess dose rate over an FF beam.
We sought to retrospectively report our outcomes using post-operative stereotactic radiosurgery (SRS)/stereotactic radiotherapy (SRT) in place of whole-brain radiation therapy (WBRT) following resection of brain metastases from our hospital-based community practice.
Materials and Methods:
A retrospective review of 23 patients who underwent post-operative SRS at our single institution from 2013 to 2017 was undertaken. Patient records, treatment plans and diagnostic images were reviewed. Local failure, distant intracranial failure and overall survival were studied. Categorical variables were analyzed using Fisher’s exact tests. Continuous variables were analyzed using Mann–Whitney tests. The Kaplan–Meier method was used to estimate survival times.
Results:
16 (70%) were single-fraction SRS, whereas the remaining 7 patients received a five-fraction treatment course. The median single-fraction dose was 16 Gy (range, 16–18). The median total dose for fractionated treatments was 25 Gy (range, 25–35). Overall survival at 6 and 12 months was 95 and 67%, respectively. Comparison of SRS versus SRT local control rates at 6 and 12 months revealed control rates of 92 and 78% versus 29 and 14%, respectively. Every patient with dural/pial involvement at the time of surgery had distant intracranial failure at the 12-month follow-up.
Findings:
Single-fraction frameless SRS proved to be an effective modality with excellent local control rates. However, the five-fraction SRT course was associated with an increased rate of local recurrence. Dural/pial involvement may portend a high risk for distant intracranial disease; therefore, it may be prudent to consider alternative approaches in these cases.
Stereotactic body radiation therapy (SBRT) is a treatment option for patients with early-stage non-small cell lung cancer who are medically inoperable or decline surgery. Here we compare the outcome of patients with centrally located lung tumours who underwent either single fraction (SF)- or five-fraction (FF-) SBRT at a single institution over 5 years.
Methods
Between January 2009 and October 2014, patients with centrally located lung tumours who underwent SBRT were included in this study. Data were retrospectively collected using an institutional review board-approved database. For analysis, the Kaplan–Meier method and competing risks method were used.
Results
In total, 11 patients received 26–30 Gy in 1 fraction, whereas 31 patients received 50–60 Gy (median 55 Gy) in 5 fractions. After a median follow-up of 12 months for SF-SBRT and 17 months for FF-SBRT groups (p=0·64), 1-year overall survival rates were 82 and 87%, respectively. SF- and FF-SBRT groups showed no significant difference in grade 3+ toxicity (p=0·28). The only grade 4 toxicity (n=1) was reported in the SF-SBRT group. All toxicities occurred >12 months after the SBRT.
Conclusions
SF- and FF-SBRT have comparable overall survival. SF-SBRT may have some utility for patients unable to have multi-fraction SBRT.
The aim of this study is to evaluate the influence of flattened and flattening filter-free (FFF) beam 6 MV photon beam for liver stereotactic body radiation therapy by using volumetric modulated arc therapy (VMAT) technique in deep inspiration breath hold (DIBH) and free breathing condition.
Materials and methods
Eight liver metastasis patients (one to three metastasis lesions) were simulated in breath hold and free breathing condition. VMAT-based treatment plans were created for a prescription dose of 50 Gy in 10 fractions, using a 230° coplaner arc and 60° non-coplanar arc for both DIBH and free breathing study set. Treatment plans were evaluated for planning target volume (PTV) dose coverage, conformity and hot spots. Parallel and serial organs at risk were compared for average and maximum dose, respectively. Dose spillages were evaluated for different isodose volumes from 5 to 80%.
Result
Mean D98% (dose received by 98% target volume) for FFF in DIBH, flattened beam in DIBH, FFF in free breathing and flatten beam in free breathing dataset were 48·9, 47·81, 48·5 and 48·3 Gy, respectively. D98% was not statistically different between FFF and flatten beam (p = 0·34 and 0·69 for DIBH and free breathing condition). PTV V105% (volume receiving 105% dose) for the same set were 3·76, 0·25, 1·2 and 0·4%, respectively. Mean heterogeneity index for all study sets and beam models varies between 1·05 and 1·07. Paddik conformity index using unflattened and flattened beam in DIBH at 98% prescription dose were 0·91 and 0·79, respectively. Maximum variation of isodose volume was observed for I-5%, which was ranging between 2288·8 and 2427·2 cm3. Increase in isodose value shows a diminishing difference in isodose volumes between different techniques. DIBH yields a significant reduction in the chest wall dose compared with free breathing condition. Average monitor units for FFF beam in DIBH, flattened beam in DIBH, FFF beam in free breathing CT dataset and flattened beam in free breathing CT dataset were 1318·6 ± 265·1, 1940·3 ± 287·6, 1343·3 ± 238·1 and 2192·5 ± 252·6 MU.
Conclusion
DIBH and FFF is a good combination to reduce the treatment time and to achieve better tumour conformity. No other dosimetric gain was observed for FFF in either DIBH or free breathing condition.
Stereotactic body radiotherapy (SBRT) is widely used for the treatment of stage-I non-small cell lung cancer (NSCLC). Patient-specific motion correlated with 4DCT could be essential for hypofractionated SBRT. All patients undergoing SBRT do not require motion management during the dose delivery. The objective of this study was to evaluate which patient may benefit from Gated SBRT.
Materials and methods
Treatment planning of 20 patients of stage-I NSCLC was analysed. Conventional and 4DCT scans were taken. Internal target volume as well as planning target volume (ITV and PTV) were determined in the CT data sets. PTVall phases created using 4DCT data sets and PTV15mm created using conventional CT data were compared. Also, ITVall phases were compared with ITV created from maximum intensity projections (ITVMIP). Suitability of patients for motion management-based treatment delivery was also evaluated.
Results
The average ITVMIP to ITVall phases ratio is 1·06 indicating good agreement between them. Based on the ratio of intensity projections, 9 out of 17 patients were found suitable for our existing gated treatment.
Conclusion
4D CT is the main requirement in SBRT to identify the patients who can benefit from motion management during the dose delivery.
Lung cancer is the most commonly diagnosed cancer in Canada and the leading cause of cancer-related mortality in both men and women in North America. Surgery is usually the primary treatment option for early-stage non-small cell lung cancer (NSCLC). However, for patients who may not be suitable candidates for surgery, stereotactic body radiation therapy (SBRT) is an alternative method of treatment. SBRT has proven to be an effective technique for treating NSCLC patients by focally administering high radiation dose to the tumour with acceptable risk of toxicity to surrounding healthy tissues. The goal of this comprehensive retrospective dosimetric study is to compare the dosimetric parameters between three-dimensional conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT) lung SBRT treatment plans for two prescription doses.
Methods:
We retrospectively analysed and compared lung SBRT treatment plans of 263 patients treated with either a 3DCRT non-coplanar or with 2–3 VMAT arcs technique at 48 Gy in 4 fractions (48 Gy/4) or 50 Gy in 5 fractions (50 Gy/5) prescribed to the planning target volume (PTV), typically encompassing the 80% isodose volume. All patients were treated on either a Varian 21EX or TrueBeam linear accelerator using 6-MV or 10-MV photon beams.
Results:
The mean PTV V95% and V100% for treatment plans at 48 Gy/4 are 99·4 ± 0·6% and 96·0 ± 1·0%, respectively, for 3DCRT and 99·7 ± 0·4% and 96·4 ± 3·4%, respectively, for VMAT. The corresponding mean PTV V95% and V100% at 50 Gy/5 are 99·0 ± 1·4% and 95·5 ± 2·5% for 3DCRT and 99·5 ± 0·8% and 96·1 ± 1·6% for VMAT. The CIRI and HI5/95 for the PTV at 48 Gy/4 are 1·1 ± 0·1 and 1·2 ± 0·0 for 3DCRT and 1·0 ± 0·1 and 1·2 ± 0·0 for VMAT. The corresponding CIRI and HI5/95 at 50 Gy/5 are 1·1 ± 0·1 and 1·3 ± 0·1 for 3DCRT and 1·0 ± 0·1 and 1·2 ± 0·0 for VMAT. The mean R50% and D2cm at 48 Gy/4 are 5·0 ± 0·8 and 61·2 ± 7·0% for 3DCRT and 4·9 ± 0·8 and 57·8 ± 7·9% for VMAT. The corresponding R50% and D2cm at 50 Gy/5 are 4·7 ± 0·5 and 65·5 ± 9·4% for 3DCRT and 4·7 ± 0·7 and 60·0 ± 7·2% for VMAT.
Conclusion:
The use of 3DCRT or VMAT technique for lung SBRT is an efficient and reliable method for achieving dose conformity, rapid dose fall-off and minimising doses to the organs at risk. The VMAT technique resulted in improved dose conformity, rapid dose fall-off from the PTV compared to 3DCRT, although the magnitude may not be clinically significant.
The aim of the current study was to (i) to calculate organ equivalent dose (OED) and (ii) to estimate excess absolute risks (EARs), lifetime attributable risks (LARs) and relative risks (RRs) from stereotactic ablative radiotherapy (SABR) for lung cancer to in-field, close to field, and out of field structures.
Methods
A total of five patients with T1, T2 (≤4 cm), N0, M0 medically inoperable non-small cell lung cancer were selected for treatment planning. Patient selection criteria were based on RTOG 0236. Five treatment deliveries were investigated: (i) three-dimensional conformal radiotherapy (3DCRT), (ii) intensity-modulated radiotherapy (IMRT), (iii) intensity-modulated radiotherapy with flattening filter free beam (IMRTF), (iv) volumetric modulated arc therapy (VMAT) and (v) volumetric modulated arc therapy with flattening filter free arcs (VMATF). Delineated normal structures included chest wall, left and right lung, trachea, small and large airways, spinal cord, oesophagus and involved ribs. All plans were prescribed to 60 Gy in five fractions to primary planning target volume (PTV) volume so that ≥98% of the PTV received ≥98% of the prescription dose and internal tumour volume received 100% of the prescription dose. The OED for all delineated normal structures was calculated using differential dose volume histograms. Using risk models, the age-dependent LAR’s and RR were calculated. Additionally, the secondary cancer risk for organs inside primary radiation was analysed using sarcoma and carcinoma risk models.
Results
For all patients, the mean V20 volumes from the SABR plans were 4·1% (3DRT), 11·8% (IMRT), and 12·7% (VMAT), respectively. The EAR (combining all organs EAR) for all the organs studied, ranged from 8·5 to 10·6/10,000 persons/year for VMATF and 3DCRT, respectively. The EAR (combining all organs EAR) for all the organs studied, ranged from 8·5 to 10·6/10,000 persons/year for VMATF and 3DCRT, respectively. The absolute EAR difference between IMRT and IMRTF was low ranging from 0·2 to 0·4/10,000 persons-year, whereas delivery difference (IMRT and VMAT) had a significant impact on EAR with absolute difference ranging from 0·5 to 1·0/10,000 persons-year for IMRT and VMAT and 1·1–1·5/10,000 persons-year for IMRTF, VMATF, respectively. The LAR data showed a strong dependence on age at exposure and the LAR decreased as a function of age at exposure. The absolute attributable risk of bone sarcoma was lower with the VMAT plan and was significantly higher with the 3DCRT plan.
Conclusion
From a clinical perspective, it should be concluded that all five solutions investigated in the study can offer high quality of patient treatments and only estimates of radiation-induced malignancies can truly differentiate among them. The results suggested it would be reasonable to use the cumulative LAR difference when needed to select between treatment techniques. In conclusion, the LAR of radiation-induced secondary cancer was significantly lower when using VMATF than when using IMRT for SABR lung patients. VMATF would be the right choice for the treatment of SABR lung patients in terms of LAR. However, more work is required for the specific estimation and long-term validation and updating of the models behind LAR estimation.
Treatment of metachronous second primary non-small cell lung cancer (NSCLC) in patients already treated with definitive radiotherapy is a matter of debate, since most patients are excluded from surgical treatment, which remains a therapeutic standard for patients with isolated lung masses. Salvage chemotherapy or immunotherapy alone offers a low probability of disease control. The option of re-irradiation often remains the only viable, but the risks of severe acute or late toxicities affecting the surrounding normal tissues make this a real clinical challenge.
Materials and methods:
From January 2015 to April 2018, five patients (male/female: 4/1; age 54–81 years, median 68) with previously irradiated NSCLC presented with a second primary lung tumour.
Results:
A partial response was seen in four patients, one complete responses in the fifth. The toxicity was low: two patients experienced a grade 2 asymptomatic radiation pneumonitis after 6 and 12 months from the end of stereotactic body radiation therapy, resolved with cortisone therapy. No acute or late oesophageal or cardiac toxicity was found.
Findings:
In this work, we present our initial experience about the use of stereotactic radiotherapy technique in already irradiated patients. We reported a local disease control in all cases with an acceptable toxicity.
The aim of this work is to report on the tumour control probability (TCP) of a UK cohort of lung stereotactic ablative radiotherapy patients (n = 198) for a range of dose and fractionations common in the UK.
Materials and methods:
TCP values for 3 (54 Gy), 5 (55 and 60 Gy) and 8 (50 Gy) fraction (#) schemes were calculated with the linear-quadratic Marsden TCP model using the Biosuite software.
Results:
TCP values of 100% were computed for the 3 # and for 5 # (α/β = 10 Gy) cohorts; reduced to 99% (range 97–100) for the 5 # cohort only when an α/β of 20 Gy was used. The average TCP value for the 50 Gy in 8 # regime was 97% (range 92–99, α/β = 10 Gy) and 64% (range 48–79, α/β = 20 Gy). Statistical significant differences were observed between the α/β of 10 Gy versus 20 Gy groups and between all data grouped by fraction.
Conclusion:
TCPs achievable with current planning techniques in the UK have been presented. The ultra-conservative 50 Gy in 8 # scheme returns a significantly lower TCP than the other regimes.
CyberKnife is the most advanced form of stereotactic body radiotherapy (SBRT) system that uses a robotic arm to deliver highly focused beams of radiation; however, a limitation is that it only irradiates from ceiling to floor direction. In patients with posterior lungs tumour who are positioned supine, normal lung tissue may suffer undesirable radiation injuries. This study compares the treatment planning between the prone set-up and the supine set-up for lung cancer in CyberKnife SBRT to decrease normal lung dose to avoid radiation side effects.
Materials and methods:
A human phantom was used to generate 108 plans (54 for prone and 54 for supine) using the CyberKnife planning platform. The supine and prone plans were compared in terms of the dosimetric characteristics, delivery efficiency and plan efficiency.
Results:
For posterior targets, the area of low-dose exposure to normal lungs was smaller in the prone set-up than in the supine set-up. V10 of the lungs was 7·53% and 10·47% (p < 0·001) in the anterior region, and 10·78% and 8·03% (p < 0·001) in the posterior region in the supine and prone set-up plans, respectively.
Conclusions:
The comparison between the prone set-up and the supine set-up was investigated with regard to target coverage and dose to organs at risk. Our results may be deployed in CyberKnife treatment planning to monitor normal tissue dose by considering patient positioning. This may assist in the design of better treatment plans and prevention of symptomatic radiation pneumonitis in lung cancer patients.
Deep inspiration breath hold (DIBH) is a method of motion management used in stereotactic ablative body radiotherapy (SABR) for lung tumours. An external gating block marker can be used as a tumour motion surrogate, however, inter-fraction gross target volume (GTV) displacement within DIBH occurs. This study measured this displacement during a reproducible breath hold regime. In addition, factors such as position of the gating block marker were analysed.
Methods and materials
A total of 121 cone beam computed tomography scans (CBCTs) from 22 patients who received DIBH SABR were retrospectively evaluated and the magnitude of inter-fraction GTV displacement was calculated for each fraction. This data was analysed to assess if any correlation existed between tumour displacement and variation in the gating block marker position on the patient, the amplitude of breath hold (BH) at computed tomography (CT), the amplitude of BH at treatment and the tumour location.
The measured tumour displacement was applied to the original planning CT to evaluate the dosimetric effect on surrounding organs at risk (OARs) using cumulative dose volume histograms (DVHs).
Results
BH amplitude was reproducible within 0·13±0·1 cm (mean±standard deviation). The magnitude of tumour displacement within BH ranged from 0 to 1·52 cm (0·41±0·28 cm). Displacement in the superior-inferior, anterior-posterior and left-right planes were 0·31±0·26 cm, 0·16±0·18 cm and 0·07±0·12 cm, respectively. No statistically significant correlation was detected between tumour displacement within DIBH and the factors investigated. The range of variation in OAR dose was −7·0 to +3·6 Gy with one statistically significant increase in OAR dose observed (oesophagus mean dose increasing by 0·16 Gy).
Findings
Reproducible BH was achievable across a range of patients. Inter-fraction GTV displacement measured 0·41±0·28 cm. Due to this low level of motion, the correction of soft tissue moves did not adversely affect OAR dose.
To compare the dosimetric outcomes of linear accelerator-based stereotactic radiotherapy (SRT) techniques—static conformal field (SCF), static conformal arc (SCA) and dynamic conformal arc (DCA), for treating pituitary adenoma and craniopharyngioma.
Materials and methods
Computer image sets of 20 patients with pituitary adenoma or craniopharyngioma and treated with post-operative SRT were selected for this study. For each dataset, three SRT plans, with SCF, SCA and DCA techniques were generated using Brain LAB, iPlan RT V.4.5.3, TPS software. The conformity index (CI), homogeneity index (HI), quality of coverage of the target, dose–volume histograms for the target and organs at risk (OARs) and the time taken to deliver treatment was compared across three sets of plan.
Results
There were 12 patients with pituitary adenoma and eight with craniopharyngioma. The CI and HI were comparable across three techniques. The quality of coverage was superior in DCA technique. OARs were better spared in SCF and DCA techniques. Time taken to deliver treatment was least in SCF technique.
Conclusions
The linac-based SRT techniques SCF, SCA and DCA are efficient in delivering highly conformal and homogenous dose to the target in pituitary adenoma and craniopharyngioma. Among these three techniques, SCF and DCA had acceptable quality of coverage. The dose received by OARs was least in the SCF technique.
Stereotactic radiosurgery (SRS) has proven itself as an effective tool in the treatment of intracranial lesions. Image-guided high dose single fraction treatments have the potential to deliver ablative doses to tumours; however, treatment times can be long. Flattening filter free (FFF) beams are available on most modern linacs and offer a higher dose rate compared to conventional flattened beams which should reduce treatment times. This study aimed to compare 6 MV FFF and 10 MV FFF to a 6 MV flattened beam for single fraction dynamic conformal arc SRS for a Varian Truebeam linac.
Materials and methods:
In total, 21 individual clinical treatment plans for 21 brain metastases treated with 6 MV were retrospectively replanned using both 6 MV FFF and 10 MV FFF. Plan quality and efficiency metrics were evaluated by analysing dose coverage, dose conformity, dose gradients, dose to normal brain, beam-on-time (BOT), treatment time and monitor units.
Results:
FFF resulted in a significant reduction in median BOT for both 6 MV FFF (57·9%; p < 0·001) and 10 MV FFF (76·3%; p < 0·001) which led to reductions in treatment times of 16·8 and 21·5% respectively. However, 6 MV FFF showed superior normal brain dose sparing (p < 0·001) and dose gradient (p < 0·001) compared to 10 MV FFF. No differences were observed for conformity.
Conclusion:
6 MV FFF offers a significant reduction in average treatment time compared to 6 MV (3·7 minutes; p = 0·002) while maintaining plan quality.
Stereotactic body radiation therapy for lung tumours can expose patients to radiation pneumonitis (RP) (<6 months after irradiation) and lung fibrosis (beyond 6 months). The aim of this study was to describe post-irradiation radiographics appearances.
Materials and methods:
This retrospective study of 90 patients with a stage I non-small cell lung carcinoma reports a detailed description of the computed tomography (CT) or positron emission tomography/CT changes that can be observed after treatment, according to modified Kimura score for RP and Koenig’s classification for fibrosis. This evaluation was realised at 1 month and then every 3–4 months, with a median follow-up of 35 months.
Results:
The most common radiological RP pattern was diffuse consolidation. It appears in a mean time of 4 months and reaches its maximum at 9 months after radiotherapy. Seventy-three per cent of the RP evolved to fibrosis. Most of these findings were encompassed in the 35 Gy isodose.
Findings:
Radiological parenchymal changes are frequent in the treatment region, which renders the tumour response monitoring by tumour size, particularly by response evaluation criteria in solid tumours, unsuitable.
Brain metastases (BM) are common in patients with HER2-positive and triple-negative breast cancer. In this study we aim to report clinical outcomes with LINAC-based stereotactic radiosurgery/radiotherapy (SRS/SRT) for BM in patients of breast cancer.
Methods:
Clinical and dosimetric records of breast cancer patients treated for BM at our institute between May, 2015 and December, 2019 were retrospectively reviewed. Patients of previously treated or newly diagnosed breast cancer with at least a radiological diagnosis of BM; 1–4 in number, ≤3·5 cm in maximum dimension, with a Karnofsky Performance Score of ≥60 were taken up for treatment with SRS. SRT was generally considered if a tumour was >3·5 cm in diameter, near a critical or eloquent structure, or if the proximity of moderately sized tumours would lead to dose bridging in a single-fraction SRS plan. The median prescribed SRS dose was 15 Gy (range 7–24 Gy) and SRT dose was 27 Gy in 3 fractions.
Clinical assessment and MR imaging was done at 6 weeks post-SRS and then every 3 months thereafter. Intracranial progression-free survival (PFS) and overall survival (OS) were calculated using Kaplan–Meier method and subgroups were compared using log rank test.
Results:
Total, 40 tumours were treated in 31 patients. The median tumour diameter was 2·3 cm (range 1·0–4·6 cm). SRS and SRT were delivered in 27 and 4 patients, respectively. SRS/SRT was given as a boost to whole brain radiotherapy (WBRT) in four patients and as salvage for progression after WBRT in six patients. In general, nine patients underwent prior surgery. The median follow-up was 7·9 months (0·2–34 months). Twenty (64·5%) patients developed local recurrence, 10 (32·3%) patients developed distant intracranial relapse and 7 patients had both local and distant intracranial relapse. The estimated local control at 6 months and 1 year was 48 and 35%, respectively. Median intracranial progression free survival (PFS) was 3·73 months (range 0·2–25 months). Median intracranial PFS was 3·02 months in patients who received SRS alone or as boost after WBRT, while it was 4·27 months in those who received SRS as salvage after WBRT (p = 0·793). No difference in intracranial PFS was observed with or without prior surgery (p = 0·410). Median overall survival (OS) was 21·7 months (range 0·2–34 months) for the entire cohort. Patients who received prior WBRT had a poor OS (13·31 months) as compared to SRS alone (21·4 months; p = 0·699).
Conclusion:
In patients with BM after breast cancer SRS alone, WBRT + SRS and surgery + SRS had comparable PFS and OS.
Induction chemotherapy (iC) followed by concurrent chemoradiation has been shown to improve overall survival (OS) for locally advanced pancreatic cancer (LAPC). However, the survival benefit of stereotactic body radiation therapy (SBRT) versus conventionally fractionated radiation therapy (CFRT) following iC remains unclear.
Materials and methods:
The National Cancer Database (NCDB) was queried for primary stage III, cT4N0-1M0 LAPC (2004–15). Kaplan–Meier analysis, Cox proportional hazards method and propensity score matching were used.
Results:
Among 872 patients, 738 patients underwent CFRT and 134 patients received SBRT. Median follow-up was 24·3 and 22·9 months for the CFRT and SBRT cohorts, respectively. The use of SBRT showed improved survival in both the multivariate analysis (hazards ratio 0·78, p = 0·025) and 120 propensity-matched pairs (median OS 18·1 versus 15·9 months, p = 0·004) compared to the CFRT.
Findings:
This NCDB analysis suggests survival benefit with the use of SBRT versus CFRT following iC for the LAPC.