Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T07:01:48.486Z Has data issue: false hasContentIssue false

Wave properties of a cylindrical antenna immersed in a magneto-active plasma

Published online by Cambridge University Press:  13 March 2009

N. A. Azarenkov
Affiliation:
Department of Physics and Technology, Kharkov State University, 310077 Kharkov, Ukraine
I. B. Denisenko
Affiliation:
Department of Physics and Technology, Kharkov State University, 310077 Kharkov, Ukraine
K. N. Ostrikov
Affiliation:
Department of Physics and Technology, Kharkov State University, 310077 Kharkov, Ukraine

Abstract

The dispersion properties and electromagnetic field topography of surface waves propagating along and in the azimuthal direction with respect to a cylindrical metal antenna immersed in a magneto-active plasma are investigated. The external magnetic field is directed along the antenna axis. The presence of a vacuum-gap sheath region separating the antenna from the plasma is assumed. The sheathless case is also considered. The dependence of the surface-wave dispersion properties on magnetic field intensity, plasma density, antenna radius and sheath thickness is presented for structure parameters close to experimental data. The results show qualitative agreement between our theory and experiment. The antenna surface impedance is calculated as well.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azarenkov, N. A. & Ostrikov, K. N. 1991 Soviet Phys. Tech. Phys. Lelt. 17, 62.Google Scholar
Azarnkov, N. A., Zaginailov, G. I. & Kondratenko, A. N. 1985 Soviet Phys. Tech. Phys. 55, 635.Google Scholar
Erdelyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1953 Higher Transcendental Functions. McGraw-Hill.Google Scholar
Girka, V. A., Girka, I. A., Kondratenko, A. N. & Tkachenko, V. I. 1988 Soviet Radiotech. Electron. 33, 1031.Google Scholar
Girka, V. A., Girka, I. A., Kondratenko, A. N. & Tkachenko, V. I. 1989 Soviet Radiotech. Electron. 34, 296.Google Scholar
Girka, V. A., Girka, I. A., Olefir, V. P. & Tkachenko, V. I. 1991 Soviet Phys. Tech. Phys. Lelt. 17, 87.Google Scholar
Ishizone, T., Adachi, C. & Mushiake, Y. 1970a Proc. IEEE 58, 1843.CrossRefGoogle Scholar
Ishizone, T., Adachi, C. & Mushiake, Y. 1970b Proc. IEEE 58, 1852.CrossRefGoogle Scholar
Jordan, E. C. 1963 Electromagnetic Theory and Antennas. Pergamon.Google Scholar
Karpman, V. I. 1988 Phys. Lett. 131 A, 31.CrossRefGoogle Scholar
Kondratenko, A. N. 1985 Surface and Volume Waves in Bounded Plasmas. Energoatomizdat.Google Scholar
Laurin, J. J., Morin, G. A. & Balmain, K. G. 1989 Radio Sci. 24, 289.CrossRefGoogle Scholar
Longinov, A. V. & Stepanov, K. N. 1983 HF Plasma Heating, p. 152. Institute of Applied Physics of the USSR Academy of Sciences (Gorky).Google Scholar
Marek, J. L. E. 1970 Ph.D. thesis, Faculté des Sciences de Paris.Google Scholar
Meyer, P. O., Vernet, N. & Lassudrie-Duchesne, P. 1974 J. Appl. Phys. 45, 700.CrossRefGoogle Scholar
Miller, E. K. 1967 University of Michigan, Ann Arbor, Report 05627–11-S.Google Scholar
Miller, M. A. & Talanov, V. I. 1961 Soviet Phys. Radiophys. 4, 795.Google Scholar
Moisan, M., Shivarova, A. & Trivelpiece, A. W. 1982 Plasma Phys. 24, 1331.CrossRefGoogle Scholar
Moisan, M. & Zakrzevski, Z. 1987 Radiation Processes in Discharge Plasmas (ed. Proud, J. & Luessen, L. H.), p. 381. Plenum.Google Scholar
Mushiake, Y. 1964 J. Res. Natl Bur. Stand. D 69, 503.Google Scholar
Sawaya, K., Ishizone, T. & Mushiake, Y. 1978 Radio Sci. 13, 21.CrossRefGoogle Scholar
Swift, J. D. & Schwar, M. J. R. 1969 Electrical Probes for Plasma Diagnostics, p. 265. Elsevier.Google Scholar
Walter, C. H. 1965 Traveling Wave Antennas. McGraw-Hill.Google Scholar