Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T11:52:55.570Z Has data issue: false hasContentIssue false

Unmagnetized diffusion for azimuthally symmetric wave and particle distributions

Published online by Cambridge University Press:  13 March 2009

P. B. Dusenbery
Affiliation:
Department of APAS, University of Colorado, Boulder, Colorado 80309-0391, U.S.A.
L. R. Lyons
Affiliation:
Space Sciences Laboratory, the Aerospace Corporation, Los Angeles, California 90009, U.S.A.

Abstract

The general equations describing the quasi-linear diffusion of charged particles from resonant interactions with a spectrum of electrostatic waves are given, assuming the wave and particle distributions to be azimuthally symmetric. These equations apply when a magnetic field organizes the wave and particle distributions in space, but when the local interaction between the waves and particles can be evaluated assuming that no magnetic field is present. Such diffusion is, in general, two-dimensional and is similar to magnetized diffusion. The connection between the two types of diffusion is presented. In order to apply the general quasi-linear diffusion coefficients in pitch angle and speed, a specific particle-distribution model is assumed. An expression for the unmagnetized dielectric function is derived and evaluated for the assumed particle distribution model. It is found that slow-mode ion-sound waves are unstable for the range of plasma parameters considered. A qualitative interpretation of unmagnetized diffusion is presented. The diffusion coefficients are then evaluated for resonant ion interactions with ion-sound waves. The results illustrate how resonant ion diffusion rates vary with pitch angle and speed, and how the diffusion rates depend upon the distribution of wave energy in k–space. The results of this study have relevance for ion beam heating in the plasma-sheet boundary layer and upstream of the earth's bow shock.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akimoto, K. & Omidi, N. 1986 Geophys. Res. Lett. 13, 97.CrossRefGoogle Scholar
Akimoto, K. & Winske, D. 1985 J. Geophys. Res. 90, 12095.CrossRefGoogle Scholar
Ashour-Abdalla, M. & Thorne, B. M. 1987 J. Geophys. Res. 83, 4755.CrossRefGoogle Scholar
Bergmann, R. & Lotko, W. 1986 J. Geophys. Res. 91, 7033.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
DeCoster, R. J. & Frank, L. A. 1979 J. Geophys. Res. 84, 5099.CrossRefGoogle Scholar
Dusenbery, P. B. 1986 J. Geophys. Res. 91, 12005.CrossRefGoogle Scholar
Dusenbery, P. B. & Lyons, L. R. 1985 J. Geophys. Res. 90, 10935.CrossRefGoogle Scholar
Dusenbery, P. B. & Martin, R. F. 1987 J. Geophys. Res. 92, 3261.CrossRefGoogle Scholar
Dusenbery, P. B., Martin, R. F. & Winglee, R. M. 1987 J. Geophys. Res. 93, 5655.CrossRefGoogle Scholar
Eastman, T. E., Frank, L. A. & Huang, C. Y. 1985 J. Geophys. Res. 90, 9541.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Fried, B. D. & Wong, A. Y. 1966 Phys. Fluids, 9, 1084.CrossRefGoogle Scholar
Fuselier, S. A. & Gurnett, D. A. 1984 J. Geophys. Res. 89, 91.CrossRefGoogle Scholar
Gary, S. P. 1978 J. Plasma Phys. 20, 47.CrossRefGoogle Scholar
Gary, S. P. & Omidi, N. 1987 J. Plasma Phys. 37, 45.CrossRefGoogle Scholar
Grabbe, C. L. 1985 Geophys. Res. Lett. 12, 483.CrossRefGoogle Scholar
Grabbe, C. L. & Eastman, T. E. 1984 J. Geophys. Res. 89, 3865.CrossRefGoogle Scholar
Gurnett, D. A. & Frank, L. A. 1978 J. Geophys. Res. 83, 58.CrossRefGoogle Scholar
Gurnett, D. A., Frank, L. A. & Lepping, R. P. 1976 J. Geophys. Res. 81, 6059.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. Benjamin.Google Scholar
Kennel, C. F. & Engelmann, F. 1966 Phys. Fluids, 9, 2377.CrossRefGoogle Scholar
Lyons, L. R. 1974 J. Plasma Phys. 12, 417.CrossRefGoogle Scholar
Lyons, L. R. & Williams, D. J. 1984 Quantitative Aspects of Magnetospheric Physics. Reidel.CrossRefGoogle Scholar
Marsch, E., Muhlhauser, K.-H., Schwenn, R., Rosenbauer, H., Pilipp, W. & Neubauer, F. M. 1982 J. Geophys. Res. 87, 52.CrossRefGoogle Scholar
Montgomery, D. C. 1971 Theory of the Unmagnetized Plasma. Gordon and Breach.Google Scholar
Omidi, N. 1985 J. Geophys. Res. 90, 12330.CrossRefGoogle Scholar
Perkins, F. W. 1976 Phys. Fluids, 19, 1012.CrossRefGoogle Scholar
Robinson, P. A. 1987 Phys. Fluids, 31, 525.CrossRefGoogle Scholar
Scarf, F. L., Fredricks, R. W., Frank, L. A., Russell, C. T., Coleman, P. J. & Neugebauer, M. 1970 J. Geophys. Res. 75, 7316.CrossRefGoogle Scholar
Stringer, T. E. 1964 Plasma Phys. 6, 267.Google Scholar