Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T17:37:29.686Z Has data issue: false hasContentIssue false

Theory for two-dimensional electron and ion Bernstein–Greene–Kruskal modes in a magnetized plasma

Published online by Cambridge University Press:  01 October 2007

B. ELIASSON
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden e-mail: [email protected]
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract

A theory for two-dimensional electron and ion Bernstein–Greene– Kruskal (BGK) modes in a magnetized space plasma is presented. The BGK modes are constructed using the energy and the canonical angular momentum of the particles, which are conserved in a cylindrically symmetric potential. The typical length scale of the BGK modes is of the same order or larger than the thermal gyroradius of the particles. The results are relevant for understanding the properties of observed localized structures in the Earth's magnetosphere and auroral zone, as well as in laboratory magnetoplasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Matsumoto, H., Kojima, H., Miyatake, T., Omura, Y., Okada, M., Nagano, I. and Tsutsui, M. 1994 J. Geophys. Res. 21, 2915.Google Scholar
[2]Ergun, R. E., Su, Y.-J., Andersson, L., Carlson, C. W., McFadden, J. P., Moxer, F. S., Newman, D. L., Goldman, M. V. and Strangeway, R. J. 2001 Phys. Rev. Lett. 87, 045003.CrossRefGoogle Scholar
[3]Saeki, K., Michelsen, P., Pécseli, H. L. and Rasmusen, J. J. 1979 Phys. Rev. Lett. 42, 501.CrossRefGoogle Scholar
[4]Petraconi, G. and Maciel, H. S. 2003 J. Phys. D: Appl. Phys. 36, 2798.CrossRefGoogle Scholar
[5]Pécseli, H. L., Trulsen, J. and Armstrong, R. H. 1981 Phys. Lett. 81A, 386.CrossRefGoogle Scholar
[6]Sagdeev, R. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.). New York: Consultants Bureau.Google Scholar
[7]Gurevich, A. V. 1968 Sov. Phys.–JETP 26, 3.Google Scholar
[8]Holloway, J. P. and Dorning, J. J. 1989 Phys. Lett. A 138, 279.CrossRefGoogle Scholar
[9]Holloway, J. P. and Dorning, J. J. 1991 Phys. Rev. A 44, 3856.CrossRefGoogle Scholar
[10]Schamel, H. 2000 Phys. Plasmas 7, 4831.CrossRefGoogle Scholar
[11]Schamel, H. 1979 Phys. Scripta 20, 336.CrossRefGoogle Scholar
[12]Schamel, H. 1986 Phys. Rep. 140, 161.CrossRefGoogle Scholar
[13]Bujarbarua, S. and Schamel, H. 1981 J. Plasma Phys. 25, 515.CrossRefGoogle Scholar
[14]Ng, C. S. and Bhattacharjee, A. 2005 Phys. Rev. Lett. 95, 245004.CrossRefGoogle Scholar
[15]Ng, C. S., Bhattacharjee, A. and Skiff, F. 2006 Phys. Plasmas 13, 055903.CrossRefGoogle Scholar
[16]Eliasson, B. and Shukla, P. K. 2004 Phys. Scripta T113, 38.Google Scholar
[17]Shukla, P. K. and Yu, M. Y. 1978 J. Math. Phys. 19, 2506.CrossRefGoogle Scholar
[18]Krasovsky, V. L., Matsumoto, H. and Omura, Y. 2004 J. Geophys. Res. 109, A04217, doi:10.1029/2003JA010198.Google Scholar
[19]Chen, L.-J., Thouless, D. J. and Tang, J. M. 2004 Phys. Rev. E 69, 055401.Google Scholar
[20]Jovanovic, D., Shukla, P. K., Stenflo, L. and Pegoraro, F. 2002 J. Geophys. Res. Space Phys. 107, 1110.CrossRefGoogle Scholar
[21]Eliasson, B. and Shukla, P. K. 2006 Phys. Rep. 422, 225.CrossRefGoogle Scholar