Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:02:28.288Z Has data issue: false hasContentIssue false

Stochastic magnetic field generation in MHD resistive instabilities: validity limits of linear stability analysis

Published online by Cambridge University Press:  13 March 2009

Marco Pettini
Affiliation:
Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
Guidetta Torricelli-Ciamponi
Affiliation:
Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy

Abstract

This paper aims at determining the validity limits of a linear analysis for a resistive instability. To this purpose, the effects of mode-coupling on the magnetic field structure are investigated in the reconnecting layer. Given an equilibrium magnetic field and a perturbation field, the conditions are found under which the equations for the magnetic field lines of force can be expressed in Hamiltonian form. These conditions can be fulfilled by a resistive instability. Consequently, in a simple equilibrium magnetic field the resistive eigenmodes have been analytically derived. This result is used to give an explicit expression of the Hamiltonian for field-line equations when two resistive eigenmodes are taken into account. The analytical form of the resulting Hamiltonian coincides with the so-called paradigm Hamiltonian (1·5 degrees of freedom) for which the Escande–Doveil renormalization procedure leads to an explicit expression for the global stochasticity threshold. Thus it can be shown that any pair of modes – in a suitable range of parameters – yields spatial stochasticity of magnetic field lines when the perturbation amplitude is still very low. Hence a limit of validity of the linear theory can be found. The linear phase of the resistive instability turns out to be relevant only to describe the onset of the instability itself.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, V. I. & Avez, A. 1968 Ergodic Problems of Classical Mechanics. Benjamin.Google Scholar
Carreras, B., Hicks, H. R., Holmes, J. A. & Waddell, B. V. 1980 Phys. Fluids, 23, 1811.CrossRefGoogle Scholar
Carreras, B., Hicks, H. R. & Lee, D. K. 1981 Phys. Fluids, 24, 67.CrossRefGoogle Scholar
Cary, J. R. & Littlejohn, R. G. 1983 Ann. Phys. (N.Y.), 151, 1.CrossRefGoogle Scholar
Elsasser, K. 1986 Plasma Phys. Contr. Fusion, 28, 1743.CrossRefGoogle Scholar
Escande, D. F. 1982 Physica Scripta, T2:l, 126.Google Scholar
Escande, D. F. 1985 Phys. Rep. 121, 165.CrossRefGoogle Scholar
Escande, D. F. & Doveil, F. 1981 Phys. Lett. 83 A, 307.CrossRefGoogle Scholar
Filonenko, N. N., Sagdeev, R. Z. & Zaslavski, G. M. 1967 Nucl. Fusion, 7, 253.CrossRefGoogle Scholar
Hénon, M. 1966 C.R. Acad. Sci. Paris, A262, 312.Google Scholar
Lichtenberg, A. J. 1984 Nucl. Fusion, 24, 1277.CrossRefGoogle Scholar
Lorenz, E. N. 1963 J. Atmos. Sci. 20, 130.2.0.CO;2>CrossRefGoogle Scholar
Matthaeus, W. H. & Lamkin, S. L. 1986 Phys. Fluids, 29, 2513.CrossRefGoogle Scholar
Matthaeus, W. H. & Montgomery, D. 1981 J. Plasma Phys. 25, 11.CrossRefGoogle Scholar
Mercier, C. 1983 Ilots magnetiques et turbulence. Report EURATOM-CEA EUR-CEA-FC-1171.Google Scholar
Mohamed-Benkadda, M. S. 1983 Thesis, Université de Paris-Sud-Orsay.Google Scholar
Priest, E. R. 1985 a Rep. Prog. Phys. 48, 955.CrossRefGoogle Scholar
Priest, E. R. 1985 b Proceedings of ESA Workshop on Future Missions in Solar, Heliospheric and Space Plasma Physics, Garmisch. ESA-SP 235, p. 137.Google Scholar
Rechester, A. B. & Rosenbluth, M. N. 1978 Phys. Rev. Lett. 40, 38.CrossRefGoogle Scholar
Rechester, A. B. & Stix, T. H. 1976 Phys. Rev. Lett. 36, 587.CrossRefGoogle Scholar
Rosenbluth, M. N., Sagdeev, R. Z., Taylor, J. B. & Zaslavski, G. M. 1966 Nucl. Fusion, 6, 297.CrossRefGoogle Scholar
Rutherford, P. H. 1973 Phys. Fluids, 16, 1903.CrossRefGoogle Scholar
Torricelli-Ciamponi, G. 1986 J. Plasma Phys. 36, 251.CrossRefGoogle Scholar
White, R. B. 1986 Rev. Mod. Phys. 58, 183.CrossRefGoogle Scholar