Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T02:58:16.938Z Has data issue: false hasContentIssue false

Stability of ion acoustic solitary waves in a magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution

Published online by Cambridge University Press:  13 December 2013

Jayasree Das
Affiliation:
Chittaranjan College, 8A, Beniatola Lane, Kolkata-700 009, West Bengal, India
Anup Bandyopadhyay*
Affiliation:
Department of Mathematics, Jadavpur University, Kolkata-700 032, West Bengal, India
K. P. Das
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92-Acharya Profulla Chandra Road, Kolkata-700 009, West Bengal, India
*
Email address for correspondence: [email protected]

Abstract

Schamel's modified Korteweg-de Vries–Zakharov–Kuznetsov (S-ZK) equation, governing the behavior of long wavelength, weak nonlinear ion acoustic waves propagating obliquely to an external uniform static magnetic field in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field, admits solitary wave solutions having a sech4 profile. The higher order stability of this solitary wave solution of the S-ZK equation has been analyzed with the help of multiple-scale perturbation expansion method of Allen and Rowlands (Allen, M. A. and Rowlands, G. 1993 J. Plasma Phys. 50, 413; 1995 J. Plasma Phys. 53, 63). The growth rate of instability is obtained correct to the order k2, where k is the wave number of a long wavelength plane wave perturbation. It is found that the lowest order (at the order k) instability condition is strongly sensitive to the angle of propagation (δ) of the solitary wave with the external uniform static magnetic field, whereas at the next order (at the order k2) the solitary wave solutions of the S-ZK equation are unstable irrespective of δ. It is also found that the growth rate of instability up to the order k2 for the electrons having Boltzmann distribution is higher than that of the non-thermal electrons having vortex-like distribution for any fixed δ.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M. A. and Rowlands, G. 1993 Determination of growth rate for linearized Zakharov-Kuznetsov equation. J. Plasma Phys. 50, 413424.CrossRefGoogle Scholar
Allen, M. A. and Rowlands, G. 1995 Stability obliquely propagating plane solitons of the Zakharov-Kuznetsov equation. J. Plasma Phys. 53, 6373.Google Scholar
Bandyopadhyay, A. and Das, K. P. 1999 Stability of solitary waves in a magnetized non-thermal plasma with warm ions. J. Plasma Phys. 62, 255267.CrossRefGoogle Scholar
Bandyopadhyay, A. and Das, K. P. 2000a Ion-acoustic double layers and solitary waves in a magnetized plasma consisting of warm ions and non-thermal electrons. Phys. Scripta 61, 9296.CrossRefGoogle Scholar
Bandyopadhyay, A. and Das, K. P. 2000b Stability of solitary kinetic Alfvén waves and ion-acoustic waves in a nonthermal plasma. Phys. Plasmas 7, 32273237.CrossRefGoogle Scholar
Bandyopadhyay, A. and Das, K. P. 2001a Stability of ion-acoustic double layers in a magnetized plasma consisting of warm ions and nonthermal electrons. Phys. Scripta 63, 145149.CrossRefGoogle Scholar
Bandyopadhyay, A. and Das, K. P. 2001b Growth rate of instability of obliquely propagating ion-acoustic solitons in a magnetized nonthermal plasma. J. Plasma Phys 65, 131150.Google Scholar
Bandyopadhyay, A. and Das, K. P. 2002 Higher order growth rate of instability of obliquely propagating kinetic Alfvén and ion-acoustic solitons in a magnetized nonthermal plasma. J. Plasma Phys 68, 285303.CrossRefGoogle Scholar
Cairns, R. A., Bingham, R., Dendy, R. O., Nairn, C. M. C., Shukla, P. K. and Mamun, A. A. 1995a Ion sound solitary waves with density depressions. J. de Physique IV 5 (C6), 4348.Google Scholar
Cairns, R. A., Mamun, A. A., Bingham, R., Dendy, R. O., Böstrom, R., Shukla, P. K. and Nairn, C. M. C. 1995b Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 27092712.Google Scholar
Cairns, R. A., Mamun, A. A., Bingham, R. and Shukla, P. K. 1996 Ion-acoustic solitons in a magnetized plasma with nonthermal electrons. Phys. Scripta T63, 8086.Google Scholar
Das, J., Bandyopadhyay, A. and Das, K. P. 2006 Stability of an alternative solitary wave solution of an ion-acoustic wave obtained from MKdV-KdV-ZK equation in magnetized non-thermal plasma consisting of warm adiabatic ions. J. Plasma Phys. 72, 587604.Google Scholar
Das, J., Bandyopadhyay, A. and Das, K. P. 2007a Existence and stability of alternative ion-acoustic solitary wave solution of the combined MKdV-KdV-ZK equation in a magnetized nonthermal plasma consisting of warm adiabatic ions. Phys. Plasmas 14, 092304-1-092304-10.Google Scholar
Das, J., Bandyopadhyay, A. and Das, K. P. 2007b Alternative ion-acoustic solitary waves in magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution: existence and stability. J. Plasma Phys. 73, 869899.Google Scholar
Das, K. P. and Verheest, F. 1989 Ion-acoustic solitons in magnetized multi-component plasmas including negative ions. J. Plasma Phys. 41, 139155.Google Scholar
Dovner, P. O., Eriksson, A. I., Böstrom, R. and Holback, B. 1994 Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21, 18271830.Google Scholar
Infeld, E. 1972 On the stability of nonlinear cold plasma waves. J. Plasma Phys. 8, 105110.Google Scholar
Infeld, E. and Rowlands, G. 1973 On the stability of nonlinear cold plasma waves II. J. Plasma Phys. 10, 293300.CrossRefGoogle Scholar
Infeld, E. and Rowlands, G. 1981 Stability of weakly nonlinear ion sound waves with finite ion temperature. J. Plasma Phys. 25, 8188.Google Scholar
Kourakis, I. and Shukla, P. K. 2005 Modulated dust-acoustic wave packets in a plasma with non-isothermal electrons and ions. J. Plasma Phys. 71, 185201.Google Scholar
Laedke, E. W. and Spatschek, K. H. 1982 Growth rates of bending KdV solitons. J. Plasma Phys., 28, 469484.Google Scholar
Mamun, A. A. 1997 Effect of ion-temperature on electrostatic solitary structures in non-thermal plasmas. Phys. Rev. E 55, 1852-1857.Google Scholar
Mamun, A. A. 1998 Nonlinear propagation of ion-acoustic waves in a hot magnetized plasma with vortex-like electron distribution. Phys. Plasmas 5, 322324.Google Scholar
Mamun, A. A. 2006 Instability of obliquely propagating electrostatic solitary waves in magnetized nonthermal dusty plasma. Phys. Scripta 58, 505509.Google Scholar
Mamun, A. A. and Cairns, R. A. 1996 Stability of solitary waves in a magnetized non-thermal plasma. J. Plasma Phys. 56, 175185.Google Scholar
Mamun, A. A., Russell, S. M., Mendoza-Briceño, César. A., Alam, M. N., Datta, T. K. and Das, A. K. 2000 Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas. Planet. Space Sci. 48, 163173.CrossRefGoogle Scholar
Munro, S. and Parkes, E. J. 2000 Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation. J. Plasma Phys. 64, 411426.Google Scholar
Munro, S. and Parkes, E. J. 2004 The stability of obliquely propagating solitary-wave solutions to a modified Zakharov-Kuznetsov equation. J. Plasma Phys. 70, 543552.Google Scholar
Parkes, E. J. and Munro, S. 2005 The stability of obliquely-propagating solitary-wave solutions to a Zakharov-Kuznetsov-type equations. J. Plasma Phys. 71, 695708.Google Scholar
Pillay, S. R. and Verheest, F. 2005 Effect of non-thermal ion distributions on the Jeans instability in dusty plasmas. J. Plasma Phys. 71, 177184.Google Scholar
Schamel, H. 1971 Stationary solutions of the electrostatic Vlasov equation. Plasma Phys. 13, 491505.Google Scholar
Schamel, H. 1972 Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 14, 905924.Google Scholar
Schamel, H. 1973 A modified Korteweg-de Varies equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9, 377387.CrossRefGoogle Scholar
Wolfram, S. 1996 The Mathemetica Book, 3rd edn.Cambridge, UK: Cambridge University Press.Google Scholar
Zakharov, V. E. and Kuznetsov, E. A. 1974 Three-dimensional solitons. Sov. Phys. JETP 39, 285286.Google Scholar