Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T02:48:47.705Z Has data issue: false hasContentIssue false

The role of energy and momentum conservation in nonlinear beam–plasma interaction

Published online by Cambridge University Press:  13 March 2009

K. Jungwirth
Affiliation:
Institute of Plasma Physics, Czechoslovak Academy of Sciences Nademlýnsk´ 600, Prague 9, Czechoslovakia

Extract

Theoretical and numerical results concerning the nonlinear interaction of an initially cold beam with a single wave (ω ≈ k vb) in either magnetized or field- free plasma are presented and discussed. By using the energy and momentum conservation laws, the equations describing the development of the wave amplitude and phase, both in the temporal and spatial problem, are derived and then solved numerically together with the equations of motion of the beam particles. The fundamental role of an absorption (or transformation) of the wave in its interaction with a beam modulated at a frequency belonging to the upper branch of the electron plasma oscillation is recognized in two model situations.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Drummond, W. E. & Pines, D. 1962 Nucl. Fusion Suppl. 3, 1049.Google Scholar
Gentle, K. W. & Robertson, C. W. 1971 Phys. Fluids, 14, 2780.CrossRefGoogle Scholar
Hopman, H. J. & Ott, W. 1968 Plasma Phys. 10, 315.CrossRefGoogle Scholar
Hopman, H. J. & van, Wakeren J. H. A. 1972 Phys. Rev. Lett. 28, 295.Google Scholar
Ivanov, A. A., Parail, V. V. & Soboleva, T. K. 1972 Zh. exp. teor. Fiz. 63, 1678.Google Scholar
Jungwirth, K. 1972 a Czech. J. Phys. B 22, 756.CrossRefGoogle Scholar
Jungwirth, K. 1972 b 5th Conf. on Controlled Fusion and Plasma Phys, Grenoble.Google Scholar
Jungwirth, K. & Kelín, L. 1975 Plasma Phys. 17. (To be published.)Google Scholar
Jungwirth, K., Piffl, V. & Ullschmied, J. 1972 Plasma Phys. 14, 339.Google Scholar
Jungwirth, K., Piffl, V. & Ullschmied, J. 1974 Plasma Phys. 16, 283.Google Scholar
Kharchenxo, I. F., Lavrovsky, V. A. & Shustin, E. G. 1972 Zh. exp. teor. Fiz. Lett. 15, 84.Google Scholar
Klíma, R. 1972 J. Plasma Phys. 7, 329.Google Scholar
Klíma, R. & Petržílka, V. A. 1968 Czech. J. Phys. B 18, 1292.Google Scholar
Kruer, W. L. 1972 Phys. Fluids, 15, 2423.Google Scholar
Kruer, W. L. & Dawson, J. M. 1972 Phys. Fluids, 15, 446.CrossRefGoogle Scholar
Lavrovsky, V. A., Kharchenko, I. F. & Shustin, E. G. 1972 Zh. exp. teor. Fiz. Lett. 16, 602.Google Scholar
Levitsky, S. M. & Shashurin, I. P. 1971 Nucl. Fusion, 11, 111.Google Scholar
Matsiborko, N. O., Onischenko, I. N., Fajnberg, Ja. B., Shapiro, V. D. & Schevchenko, V. I. 1972 Zh. exp. teor. Fiz. 63, 874.Google Scholar
Mizuno, K. & Tanaka, S. 1972 Phys. Rev. Lett. 29, 45.CrossRefGoogle Scholar
Morales, G. J. & O'nell, T. M. 1972 Phys. Rev. Lett. 28, 417.Google Scholar
O'Neil, T. M. & Winfrey, J. H. 1972 Phys. Fluids, 15, 1514.Google Scholar
Piffl, V., ŠUnka, P., Ullschmied, J., Jungwirth, K. & Krlín, L. 1971 Plasma Phys. and Controlled Nuci. Fusion Research, Vienna, vol. 2, p. 155.Google Scholar
Shafranov, V. D. 1967 Reviews of Plasma Physics, vol. 3 (ed. Leontovich, M. A.). New York: Consultants Bureau,Google Scholar
Shapiro, V. D. & Shevchenko, V. I. 1972 Nucl. Fusion, 12, 133.Google Scholar
Šunka, P. & Jungwirth, K. 1975 Czech. J. Phys. B 25. (To be published.)Google Scholar
Vedenov, A. A., Velikhov, E. P. & Sagdeev, R. Z. 1962 Nucl. Fusion Suppl. 2, 465.Google Scholar