Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:17:51.489Z Has data issue: false hasContentIssue false

Plasma equilibrium in toroidal l = 3 stellarators

Published online by Cambridge University Press:  13 March 2009

P. J. Fielding
Affiliation:
Culham Laboratory, Abingdon, Oxon, 0X14 3DB, U.K. (Euratom/UKAEA Fusion Association)
W. N. G. Hitchon
Affiliation:
Merton College and The Department of Engineering Science, Oxford University, Oxford, England

Abstract

The equations of MHD equilibrium are solved by including plasma pressure and current in a large aspect-ratio ordering scheme for the calculation of toroidal, l = 3 stellarator vacuum fields. The extended ordering unifies the low-beta equilibrium theory for tokamaks and l = 3 stellarators, and allows solutions to be obtained simply for arbitrarily prescribed pressure and current density profiles. Expressions are given for the equilibrium magnetic field and the equation for the flux surfaces is calculated, including the effects of l = 3 shaping and toroidal displacement. These results are used to calculate equilibria for the parameters of CLEO stellarator, and we examine the role of an externally applied vertical field in reducing pressure-induced flux surface distortion and destruction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkinson, D. W., Dellis, A. N., Gill, R. D., Lees, D. J., Millar, W., Powell, B. A., Shatford, P. A. & Webb, D. R. A. 1976 Phys. Rev. Lett. 37, 1616.CrossRefGoogle Scholar
Bykov, V. E., Kuznetsov, Yu. K., Pashnev, V. K. & Pinos, I. B. 1977 Kharkov Physico-Technical Institute Report KhFTI 77–5.Google Scholar
Dobrott, D. & Frieman, E. A. 1971 Phys. Fluids, 14, 349.CrossRefGoogle Scholar
Greene, J. M. & Johnson, J. L. 1961. Phys. Fluids, 4, 875.CrossRefGoogle Scholar
Greene, J. M., Johnson, J. L. & Weimer, K. E. 1971. Phys. Fluids, 14, 671.CrossRefGoogle Scholar
Kruskal, M. D. 1952 U.S. Atomic Energy Commission Report No. NYO-998(PM-S-5).Google Scholar
Lortz, D. & Nührenberg, J. 1976 Z. Nat urforschung, 31a, 1277.Google Scholar
Mercier, C. & Luc, H. 1974 Lectures on Plasma Physics, EUR 5127e, Commission of European Communities, Luxembourg.Google Scholar
Morozov, A. I. & Solovev, L. S. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 2. Consultants Bureau.Google Scholar
Morese, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics, vol. II. McGraw-Hill.Google Scholar
Ohasa, K., Hamada, Y., Fujiwara, M. & Miyamoto, K. 1977 J. Appl. Phys. Japan, 16, 617.CrossRefGoogle Scholar
Shafranov, V. D. 1960 Soviet Phys. JETP, 37, 775.Google Scholar
Shafranov, V. D. & Zakharov, L. E. 1972 Nuct. Fusion, 12, 599.CrossRefGoogle Scholar
Solovev, L. S. & Shafranov, V. D. 1970 Reviews of Plasma Physics (ed. Leonto-vich, M. A.), vol. 5. Consultants Bureau.Google Scholar
Yurchenko, E. I. 1968 Soviet Phys. Tech. Phys. 12, 1059.Google Scholar