Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:51:57.311Z Has data issue: false hasContentIssue false

Parametric instabifity of transverse and Langmuir waves in a plasma

Published online by Cambridge University Press:  13 March 2009

Kai Fong Lee
Affiliation:
Department of Electronics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Extract

The parametric excitation of transverse and Langmuir waves by an externally-driven electromagnetic field of frequency (ω0 > 2ωp) in a warm and collisional plasma is studied, using the fluid equations. By an application of the multiple- time-scale perturbation method, the threshold intensity and the growth rate above threshold are obtained. The results are compared with those of Goldman (1969) and Prasad (1968), both of whom worked with a kinetic model.

The theory of parametric instabilities in plasmas has been the subject of numerous investigations in recent years. Broadly speaking, the instabilities can be grouped into two categories: those for which the excited waves are purely electrostatic (see e.g. DuBois & Goldman 1965, 1967; Silin 1965; Lee & Su 1966; Jackson 1967; Nishikawa 1968; Kaw & Dawson 1969; Tzoar 1969; Sanmartin 1970; McBride 1970; Perkins & Flick 1971; Fejer & Leer 1972a, b; Bezzerides & Weinstock 1972; DuBois & Goldman 1972), and those for which one of the excited waves is electromagnetic (see e.g. Goldman & Dubois 1965; Montgomery & Alexeff 1966; Chen & Lewak 1970; Bodner & Eddleman 1972; Fejer & Leer 1972b; Lee & Kaw 1972; Forslund et al. 1972).

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bezzerides, B. & Weinstock, J. 1972 Phys. Rev. Letters, 28, 481.CrossRefGoogle Scholar
Bodner, S. E. & Eddleman, J. L. 1972 Phys. Rev. A 5, 355.CrossRefGoogle Scholar
Bogolyubov, N. N. & Mitropolskii, Y. A. 1961 Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Broach.Google Scholar
Chen, C. S. & Lewak, G. 1970 J. Plasma Phys. 4, 357.CrossRefGoogle Scholar
Dubois, D. F. & Goldman, M. V. 1965 Phys. Rev. Letters 14, 544.CrossRefGoogle Scholar
Dubois, D. F. & Goldman, M. V. 1967 Phys. Rev. 164, 207.CrossRefGoogle Scholar
Dubois, D. F. & Goldman, M. V. 1972 Phys. Fluids, 15, 919.CrossRefGoogle Scholar
Fejer, J. A. & Leer, E. 1972a J. Geophys. Res. 77, 700.CrossRefGoogle Scholar
Fejer, J. A. & Leer, E. 1972b Radio Sci. 7, 481.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1972 Phys. Rev. Letters, 29, 249.CrossRefGoogle Scholar
Goldman, M. V. & Dubois, D. F. 1965 Phys. Fluids, 8, 1404.CrossRefGoogle Scholar
Goldman, M. V. 1969 Nonlinear Effects in Plasmas (ed. Kalman, G. and Feix, M.), p. 335. Gordon and Breach.Google Scholar
Jackson, E. A. 1967 Phys. Rev. 153, 230.CrossRefGoogle Scholar
Lee, K. F. 1974a J. Plasma Phys. 11, 99.CrossRefGoogle Scholar
Lee, K. F. 1974b Phys. Fluids, 17, 1220.CrossRefGoogle Scholar
Lee, Y. C. & Su, C. H. 1966 Phys. Rev. 152, 129.CrossRefGoogle Scholar
Lee, Y. C. & Kaw, P. K. 1972 Phys. Fluids, 15, 911.CrossRefGoogle Scholar
Mcbride, J. B. 1970 Phys. Fluids, 13, 2725.CrossRefGoogle Scholar
Montgomery, D. & Alexeff, I. 1966 Phys. Fluids, 9, 1362.CrossRefGoogle Scholar
Nishikawa, K. 1968 J. Phys. Soc. (Japan), 24, 916; 1152.CrossRefGoogle Scholar
Perkins, F. W. & Flick, J. 1971 Phys. Fluids, 14, 2012.CrossRefGoogle Scholar
Prasad, R. 1968 Phys. Fluids, 11, 1768.CrossRefGoogle Scholar
Sanmartin, J. R. 1970 Phys. Fluids, 13, 1533.CrossRefGoogle Scholar
Silin, V. P. 1965 Soviet Phys. JEPT,21, 1127.Google Scholar
Tzoar, N. 1969 Phys. Rev. 178, 356.CrossRefGoogle Scholar
Utlaut, W. & Cohen, R. 1971 Science, 174, 245.CrossRefGoogle Scholar