Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T10:27:10.953Z Has data issue: false hasContentIssue false

Oblique nonlinear Alfvén waves in strongly magnetized beam plasmas. Part 1. Nonlinear vector evolution equation

Published online by Cambridge University Press:  13 March 2009

Bernard Deconinck
Affiliation:
Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium
Peter Meuris
Affiliation:
Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium
Frank Verheest
Affiliation:
Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium

Abstract

Nonlinear MHD waves propagating obliquely to the external magnetic field in warm multi-species plasmas with anisotropic pressures and different equilibrium drifts are treated without imposing the customary quasi-neutrality between the different species or neglecting the displacement current in Ampère's law. The wave magnetic field obeys a vector nonlinear evolution equation, which in the limits of parallel propagation or of both the neglect of the displacement current and the imposition of quasi-neutrality reduces to the vector formulation of the well-known derivative nonlinear Schrödinger equation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deconinck, B., Meuris, P. & Verheest, F. 1993 J. Plasma Phys. 50, 457.CrossRefGoogle Scholar
Hada, T., Kennel, C. F. & Buti, B. 1989 J. Geophys. Res. 94, 65.CrossRefGoogle Scholar
Kennel, C. F., Buti, B., Hada, T. & Pellat, R. 1988 Phys. Fluids 31, 1949.CrossRefGoogle Scholar
Khanna, M. & Rajaram, R. 1982 J. Plasma Phys. 28, 459.CrossRefGoogle Scholar
Michael, F. C. 1991 Theory of Neutron Star Magnetospheres, p. 112. University of Chicago Press.Google Scholar
Mio, K. 1988 J. Phys. Soc. Japan 57, 941.CrossRefGoogle Scholar
Mio, K., Ogino, T., Minami, M. & Takeda, S. 1976 J. Phys. Soc. Japan 41, 265.CrossRefGoogle Scholar
MjØlhus, E. & Wyller, J. 1986 Physica Scripta 33, 442.CrossRefGoogle Scholar
Mjølhus, E. & Wyller, J. 1988 J. Plasma Phys. 40, 299.CrossRefGoogle Scholar
Rogister, A. 1971 Phys. Fluids 14, 2733.CrossRefGoogle Scholar
Sakai, J.-I. & Sonnerup, B. U. Ö. 1983 J. Geophys. Res. 88, 9069.CrossRefGoogle Scholar
Shkarofsky, I. P., Johnston, T. W. & Bachynski, M. P. 1966 The Particle Kinetics of Plasmas. Addison-Wesley.Google Scholar
Spangler, S. R. 1992 Solar Wind Seven (ed. Marsch, E.& Schwenn, R.), p. 539. Pergamon.CrossRefGoogle Scholar
Spangler, S. R. & Plapp, B. B. 1992 Phys. Fluids B 4, 3356.CrossRefGoogle Scholar
Spangler, S. R. & Sheerin, J. P. 1982 J. Plasma Phys. 27, 193.CrossRefGoogle Scholar
Verheest, F. 1990 Icarus 86, 273.CrossRefGoogle Scholar
Verheest, F. 1992 J. Plasma Phys. 47, 25.CrossRefGoogle Scholar
Verheest, F. & Buti, B. 1992 J. Plasma Phys. 47, 15.CrossRefGoogle Scholar