Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T18:32:09.008Z Has data issue: false hasContentIssue false

Modulational instability of an ion wave packet in a cylindrical plasma-filled waveguide

Published online by Cambridge University Press:  13 March 2009

B. Ghosh
Affiliation:
Department of Physics, R.K. Mission Vidyamandira, Belur Math, Howrah-711 202, India

Abstract

The method of multiple scales is used to derive a nonlinear Schrödinger equation describing the nonlinear evolution of an ion wave packet propagating along a cylindrical plasma-filled waveguide. Numerical evaluation of nonlinear and dispersive terms shows that the wave is modulationally unstable if the wavenumber exceeds a certain critical value. On comparing with the case of an unbounded plasma, it is shown that finite geometry causes a significant shift of this critical value towards smaller wavenumbers, where Landau damping is relatively small.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asano, N., Taniuti, T. & Yajima, N. 1969 J. Math. Phys. 10, 2020.CrossRefGoogle Scholar
Davey, A. & Stewartson, K. 1974 Proc. R. Soc. Lond. A388, 101.Google Scholar
Ghosh, B. & Das, K. P. 1985 Plasma Phys. 27, 969.Google Scholar
Ghosh, B. & Das, K. P. 1987 Phys. Fluids 30, 1226.CrossRefGoogle Scholar
Ghosh, B. & Das, K. P. 1988 J. Plasma Phys. 40, 545.CrossRefGoogle Scholar
Ichikawa, Y. H., Imamura, T. & Taniuti, T. 1972 J. Phys. Soc. Japan 33, 189.CrossRefGoogle Scholar
Ichikawa, Y. H. & Taniuti, T. 1973 J. Phys. Soc. Japan 34, 513.CrossRefGoogle Scholar
Ikezi, H. 1973 Phys. Fluids 16, 1668.CrossRefGoogle Scholar
Ikezi, H., Taylor, R. J. & Baker, D. R. 1970 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Infeld, E. & Rowlands, G. 1979 Proc. R. Soc. Lond. A 366, 537.Google Scholar
Infeld, E. & Rowlands, G. 1981 J. Plasma Phys. 25, 81.CrossRefGoogle Scholar
Infeld, E. & Rowlands, G. 1990 Nonlinear Waves, Solitons and Chaos. Cambridge University Press.Google Scholar
Kakutani, T. & Sugimoto, N. 1974 Phys. Fluids 17, 1617.CrossRefGoogle Scholar
Shimizu, K. & Ichikawa, Y. H. 1972 J. Phys. Soc. Japan 33, 789.CrossRefGoogle Scholar
Sneddon, I. N. 1951 Fourier Transforms. McGraw-Hill.Google Scholar
Su, C. H. 1970 Phys. Fluids 13, 1275.CrossRefGoogle Scholar
Taniuti, T. & Yajima, N. 1969 J. Math. Phys. 10, 1369.CrossRefGoogle Scholar
Tappert, F. D. & Judice, C. N. 1972 Phys. Rev. Lett. 29, 1308.CrossRefGoogle Scholar
Washimi, H. & Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Watanabe, S. 1975 J. Plasma Phys. 13, 217.CrossRefGoogle Scholar
Watanabe, S. 1977 J. Plasma Phys. 17, 487.CrossRefGoogle Scholar