Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T02:01:06.763Z Has data issue: false hasContentIssue false

Magnetohydrodynamic parametric instabilities driven by a standing Alfvén wave in a low-β plasma

Published online by Cambridge University Press:  13 March 2009

L. P. L. Oliveira
Affiliation:
Instituto de Fisica–Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501–970 Porto Alegre, Rio Grande do Sul, Brazil
A. C.-L. Chian
Affiliation:
National Institute for Space Research—INPE, P.O. Box 515, 12201970 São José dos Campos SP, Brazil

Abstract

The stability of a finite-amplitude standing Alfvén wave of circular polarization in a low-β plasma is studied using a set of nonlinearly coupled MHD wave equations. In the presence of a standing Alfvén pump, two distinct gratings associated with the density fluctuations are excited: those due to the ponderomotive beating of the pump magnetic field, and those due the induced magnetic fluctuations. The roles played by the two gratings in the mode coupling are analysed. Both convective and purely growing regimes of the MHD parametric instabilities can be produced by a standing Alfvén wave. In both regimes, the maximum growth rate increases as the pump amplitude increases, and decreases as increases. Tn the presence of the second grating, a new unstable convective regime appears that widens the overall instability bandwidth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boehm, M.H., Carlson, C.W., McFadden, J.P., Clemmons, J.H. & Mozer, F.S. 1990 J. Geophys. Res. 95, 12157.Google Scholar
Brodin, G. & Stenflo, L. 1988 Physica Scripta 37, 89.CrossRefGoogle Scholar
Chian, A.C.L. & Alves, M.V. 1988 Astrophys. J. 330, L77.Google Scholar
Chian, A.C.L. & Oliveira, L.P.L. 1994 Aslron. Astrophys. 286, L1.Google Scholar
Chian, A.C.L., Lopes, S.R. & Alves, M.V. 1994 Astron. Astrophys. 288, 981.Google Scholar
Cross, R.C. 1988 An Introduction to Alfvén Waves. Adam Hilger, Bristol.Google Scholar
Derby, N.F. 1978 Astrophys. J. 224, 1013.CrossRefGoogle Scholar
Galeev, A.A. & Oraevskii, V.N. 1963 Soviet. Phys. Dokl. 7, 988.Google Scholar
Glanz, J., Goldman, M.V., Newman, D.L. & McKinstrie, C.J. 1993 Phys. Fluids B 5, 1101.CrossRefGoogle Scholar
Goldstein, M.L. 1978 Astrophys. J. 219, 700.Google Scholar
Hung, N.T. 1974 J. Plasma Phys. 12, 445.Google Scholar
Jayanti, V. & Hollweg, J.V. 1993 a J. Geophys. Res. 98, 13247.CrossRefGoogle Scholar
Jayanti, V. & Hollweg, J.V. 1993 b J. Geophys. Res. 98, 19049.CrossRefGoogle Scholar
Knudsen, D.J., Kelley, M.C., Earle, G.D., Vickrey, J.F. & Boehm, M. 1990 Geophys. Res. Lett. 17, 921.CrossRefGoogle Scholar
Kuo, S.P., Whang, M.H. & Schmidt, G. 1989 Phys. Fluids B 1, 734.CrossRefGoogle Scholar
Lashmore, Davies C.N. 1976 Phys. Fluids 19, 587.Google Scholar
Lashmore Davies, C.N. & Ong, R.S.B. 1974 Phys. Rev. Lett. 32, 1172.Google Scholar
Longtin, M. & Sonnerup, B.U.Ö. 1986 J. Geophys. Res. 91, 6816.CrossRefGoogle Scholar
Machida, S., Spangler, S.R. & Goertz, C.K. 1987 J. Geophys. Res. 92, 7413.CrossRefGoogle Scholar
Melrose, D.B. 1986 Instabilities in Space and Laboratory Plasmas. Cambridge University Press.Google Scholar
Rizzato, F.B. & Chian, A.C.L. 1992 J. Plasma Phys. 48, 71.CrossRefGoogle Scholar
Sagdeev, R.Z. & Galeev, A.A. 1969 Nonlinear Plasma Theory. Benjamin, New York.Google Scholar
Sakai, J.I. & Sonnerup, B.U.Oˇ. 1983 J. Geophys. Res. 88, 9068.Google Scholar
Teresawa, T., Hoshino, M., Sakai, J.I. & Hada, T. 1986 J. Geophys. Res. 91, 4171.Google Scholar
Vinas, A.F. & Goldstein, M.L. 1991 J. Plasma Phys. 46, 107.Google Scholar