Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T12:46:59.805Z Has data issue: false hasContentIssue false

Linear stability of Vlasov–Poisson electron plasma in crossed fields. Perturbations propagating parallel to the magnetic field

Published online by Cambridge University Press:  13 March 2009

Hee-Jae Lee
Affiliation:
Clarkson University, Potsdam, New York 13676, U.S.A.
D. J. Kaup
Affiliation:
Clarkson University, Potsdam, New York 13676, U.S.A.
Gary E. Thomas
Affiliation:
Varian Beverly, Beverly, Massachusetts 01915, U.S.A.

Abstract

It is shown that electrostatic Vlasov–Poisson perturbations that propagate parallel to the magnetic field in a planar magnetron are stable for both an isotropic and also for a particular anisotropic (Ty = 3Tx) temperature distribution. The inhomogeneity of the electron density is fully incorporated in the analysis. The proof makes use of only the dispersion relation of Trivelpiece–Gould type, without actually solving the eigenvalue equation. These results suggest, not unexpectedly, that these modes should be stable for all such anisotropic velocity distributions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buneman, O., Levy, R. H. & Linson, L. M. 1966 J. Appl. Phys. 37, 3203.CrossRefGoogle Scholar
Chernin, D. & Lau, Y. Y. 1984 Phys. Fluids, 27, 2319.CrossRefGoogle Scholar
Crawford, F. W. 1967 Proceedings of the 8th International Conference on Phenomena in lonized Oases, Vienna.Google Scholar
Davidson, R. G. 1974 Theory of Nonneutral Plasmas. Benjamin.Google Scholar
Davidson, R. C. & Tsang, K. 1984 Phys. Rev. A 30, 488.CrossRefGoogle Scholar
Davidson, R. C. & Tsang, K. 1985 Phys. Fluids, 28, 1169.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. 1985 Phys. Reports 123, 1.CrossRefGoogle Scholar
Kaup, D. J., Hansen, P. J. & Thomas, G. E. 1985 Institute for Nonlinear Studies Report 56, Clarkson University.Google Scholar
Knauer, W. 1966 J. Appl. Phys. 37, 602.CrossRefGoogle Scholar
Ott, E., Antonsen, T. M., Chang, C. L. & Drobot, A. T. 1985 Phys. Fluids, 28, 1948.Google Scholar
Prasad, S. A., Morales, G. J. & Fried, B. D. 1985 Phys. Rev. Lett. 59, 2336.Google Scholar
Thomas, G. E. 1982 J. Appl. Phys. 53, 5.Google Scholar
Trivelpiece, A. W. & Gould, R. W. 1959 J. Appl. Phys. 30, 1784.CrossRefGoogle Scholar