Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T08:28:55.966Z Has data issue: false hasContentIssue false

Laser-to-proton energy transfer efficiency in laser–plasma interactions

Published online by Cambridge University Press:  01 April 2009

E. FOURKAL
Affiliation:
Department of Radiation Physics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA ([email protected])
I. VELTCHEV
Affiliation:
Department of Radiation Physics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA ([email protected])
C.-M. MA
Affiliation:
Department of Radiation Physics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA ([email protected])

Abstract

It is shown that the energy of protons accelerated in laser–matter interaction experiments may be significantly increased through the process of splitting the incoming laser pulse into multiple interaction stages of equal intensity. From a thermodynamic point of view, the splitting procedure can be viewed as an effective way of increasing the efficiency of energy transfer from the laser light to protons, which peaks for processes having the least amount of entropy gain. It is predicted that it should be possible to achieve at least a 100% increase in the energy efficiency in a six-stage laser proton accelerator compared with a single laser–target interaction scheme.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Roth, M., Cowan, T., Key, M., Hatchett, S., Brown, C., Fountain, W., Johnson, J., Pennington, D. and Snavely, R. 2001 Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
[2]Bychenkov, V., Rozmus, W. and Maksimchuk, A. 2001 Fast ignitor concept with light ions. Plasma Phys. Rep. 27, 10171020.Google Scholar
[3]Boody, F., Hoepfl, R. and Hora, H. 1996 Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction nad increased durability: Laser-Ion Sources. Laser Part. Beams 14, 443449.CrossRefGoogle Scholar
[4]Bulanov, S. and Khoroshkov, V. 2002 Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453456.CrossRefGoogle Scholar
[5]Fourkal, E., Shahine, B., Ding, M., Li, J., Tajima, T. and Ma, C.-M. 2002 Particle in cell simulation of laser-accelerated proton beams for radiation therapy. Med. Phys. 29, 27882798.CrossRefGoogle ScholarPubMed
[6]Gurevich, A., Pariskaya, L., and Pitaievskii, L. 1966 Analytic soluions to the Vlasov equations for expanding plasmas. Sov. Phys.–JETP 22, 449455.Google Scholar
[7]Kovalev, V. and Bychenkov, V. 2003 Analytic soluions to the Vlasov equations for expanding plasmas. Phys. Rev. Lett. 90, 185004.CrossRefGoogle Scholar
[8]Bulanov, S., Naumova, N., Esirkepov, T. and Califano, F. 2000 Generation of collimated beams of relativistic ions in laser–plasma interactions. JETP Lett. 71, 407411.CrossRefGoogle Scholar
[9]Sentoku, Y., Liseikina, T., Esirkepov, T., Califano, F., Naumova, N., Ueshima, Y., Vshivkov, V., Kato, Y., Mima, K., Nishihara, K. and Bulanov, S. 2000 High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas. Phys. Rev. E 62, 72717281.Google ScholarPubMed
[10]Bulanov, S. V., Esirkepov, T. Zh., Kamenets, F. F., Kato, Y., Kuznetsov, A. V., Nishihara, K., Pegoraro, F., Tajima, T. and Khoroshkov, V. S. 2002 Generation of high-quality charged particle beams during the acceleration of ions by high-power laser radiation. Plasma Phys. Rep. 28 (12), 975991.CrossRefGoogle Scholar
[11]Fourkal, E., Velchev, I. and Ma, C. 2005 Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers. Phys. Rev. E 71, 036412.Google ScholarPubMed
[12]Silva, L. O., Marti, M., Davies, J. R., Fonseca, R. A., Ren, C., Tsung, F. S. and Mori, W. B. 2004 Proton shock acceleration in laser–plasma interactions. Phys. Rev. Lett. 92, 015002.CrossRefGoogle ScholarPubMed
[13]Esirkepov, T., Yamagiwa, M. and Tajima, T. 2006 Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96, 105001.Google Scholar
[14]Velchev, I., Fourkal, E. and Ma, C. 2007 Laser-induced coulomb mirror effect: applications for proton acceleration. Phys. Plasmas 14, 033106.CrossRefGoogle Scholar
[15]Landau, L. D. and Lifshits, E. M. 1999 Statistical Physics, Part I. Amsterdam: Elsevier.Google Scholar
[16]Mishchenko, E. and Pshenichka, P.unpublishedGoogle Scholar
[17]Prigogine, I. 1947 Etude Thermodynamique des Phenomènes irréversibles. Liège: Editions Desoer, Ch. V.Google Scholar
[18]Robertson, H. S. 1969 Ambipolarity and plasma stability Phys. Rev. 188, 288.CrossRefGoogle Scholar
[19]Klein, M. J. and Meijer, P. H. E. 1954 Principle of minimum entropy production Phys. Rev. 96, 250.CrossRefGoogle Scholar
[20]Tajima, T. 1989 Computational Plasma Physics with Applications to Fusion and Astrophysics. Reading, MA: Addison-Wesley.Google Scholar
[21]Birdsall, C. K. and Langdon, A. B. 1985 Plasma Physics via Computer Simulation. New York: McGraw-Hill.Google Scholar
[22]Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K. U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K. and Esirkepov, T. 2006 Laser–plasma acceleration of quasi-monoenergetic protons from microstructured targets Nature 439, 445.CrossRefGoogle ScholarPubMed
[23]Eliezer, S. 2002 The Interaction of High-power Lasers with Plasmas. Bristol: IOP Publishing.CrossRefGoogle Scholar
[24]Essex, C., Kennedy, D. and Berry, R. 2003 How hot is radiation? Am. J. Phys. 71, 969.CrossRefGoogle Scholar
[25]Mungan, C. 2005 Radiation thermodynamics with applications to lasing and fluorescent cooling Am. J. Phys. 73, 315.CrossRefGoogle Scholar