Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T03:06:12.508Z Has data issue: false hasContentIssue false

I-V characteristics and the synthesis of ZnS nanoparticles by glow discharge at the metal–ionic liquid interface

Published online by Cambridge University Press:  21 December 2011

T. ABDUL KAREEM
Affiliation:
PG & Research Department of Physics, Kongunadu Arts and Science College, GN Mills PO, Coimbatore, Tamilnadu 641 029, India ([email protected], [email protected])
A. ANU KALIANI
Affiliation:
PG & Research Department of Physics, Kongunadu Arts and Science College, GN Mills PO, Coimbatore, Tamilnadu 641 029, India ([email protected], [email protected])

Abstract

A plasma chamber was constructed for the synthesis of ZnS nanoparticles in ionic liquid by glow discharge electrolysis method. Current and voltage (I-V) characteristics of the discharge at the metal–ionic liquid interface showed that the curve follows Ohm's law up to a particular voltage only so that the ZnS nanoparticle preparation was performed after the critical voltage. X-ray diffraction and energy dispersive spectral analysis showed that the samples contain ZnS nanoparticles and also found that tungsten from the metal electrode dissolved in the BMIM[BF4] ionic liquid under plasma and formed tungstic oxide by accepting atmospheric oxygen.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel Aala, A. S., Al-Salmana, R., Al-Zoubia, M., Borissenkoa, N., Endresa, F., Höffta, O., Prowalda, A. and El Abedin, S. Z. 2011 Interfacial electrochemistry and electro deposition from some ionic liquids: in situ scanning tunneling microscopy, plasma electrochemistry, selenium and macroporous materials, Electrochim. Acta 56 (28), 1029510305. doi: 10.1016/j.electacta.2011.02.063CrossRefGoogle Scholar
Abdul Kareem, T. and Anu Kaliani, A. 2011 Glow discharge plasma electrolysis for nanoparticles synthesis. Ionics. doi:10.1007/s11581-011-0639-yCrossRefGoogle Scholar
Karunasagar, D. and Shekhar, R. 2009 Development of electrolyte cathode glow discharge atomic emission spectroscopy for the analysis of elements at trace and ultra trace levels. BARC Newsl. (CCM, Hyderabad) 301, 1422.Google Scholar
Brettholle, M., Höfft, O., Klarhöfer, L., Mathes, S., Maus-Friedrichs, W., Zein El Abedin, S., Krischok, S., Janek, J. and Endres, F. 2010 Plasma electrochemistry in ionic liquids: deposition of copper nanoparticles. Phys. Chem. Chem. Phys. doi: 10.1039/b906567aCrossRefGoogle Scholar
Bruggeman, P., Ribezl, E., Degroote, J., Vierendeels, J. and Leys, C. 2008 Plasma characterisitics and electrical breakdown between metal and water electrodes. J. Optoelectron. Adv. Mater. 10 (8), 19641967.Google Scholar
Bruggeman, P., Schram, D., González, M., Rego, R., Kong, M. G. and Leys, C. 2009 Characterization of a direct DC-excited discharge in water by optical emission spectroscopy. Plasma Sources Sci. Technol. 18, 025017 (13pp).CrossRefGoogle Scholar
Cullity, B. D. 1967. Elements of X-ray Diffraction. Massachusetts: Addision Wesley.Google Scholar
Endres, F. 2002 Ionic liquids: solvents for the electrodeposition of metals and semiconductors. Chem Phys. Chem. 3, 144154.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Endres, F., MacFarlane, D. and Abbott, A. 2008 Electrodeposition from Ionic Liquids. Germany: Wiley-VCH Verlag Gmbh.CrossRefGoogle ScholarPubMed
Gai, K. 2006a Aqueous benzoquinone degradation induced by plasma with glow discharge electrolysis. Can. J. Anal. Sci. Spectrosc. 51, 4.Google Scholar
Gai, K. 2006b Aqueous diphenyl degradation induced by plasma with glow discharge electrolysis. J. Chin. Chem. Soc. 53, 627632.CrossRefGoogle Scholar
Gai, K. and Dong, Y.-J. 2005 Plasma-induced degradation of azobenzene in water. J. Chin. Chem. Soc. 52, 273276.CrossRefGoogle Scholar
Gao, J. 2006 A novel technique for wastewater treatment by contact glow discharge electrolysis. Pak. J. Biol. Sci. 9 (2), 323329.CrossRefGoogle Scholar
Gubkin, . 1887 Reduced matrix interferences compared to flame. J. Ann. Phys. Chem. 32, 114115.CrossRefGoogle Scholar
Harada, K., Suzuki, S. and Ishida, H. 1977 Syntheses of amino acids from unsaturated aliphatic carboxylic acid by contact glow discharge electrolysis. Specialia. Experientia 34 (1), 300331.Google Scholar
Harada, K., Terasawa, J. and Suzuki, S. 1978 Syntheses of uracil and thymine by contact glow-discharge electrolysis. Naturwissenschaften 65 (9), 259.CrossRefGoogle Scholar
Hicking, A. and Ingram, M. D. 1964 Contact glow-discharge electrolysis. Trans. Faraday Soc. 60, 783793. (http://www.tciamerica.com/catalog/B2195.html)CrossRefGoogle Scholar
Jinzhang, G., Aixiang, W., Yan, F., Jianlin, W., Dongping, M., Xiao, G., Yan, L. and Wu, Y. 2008 Analysis of energetic species caused by contact glow discharge electrolysis in aqueous solution. Plasma Sci. Technol. 10, 1. doi: 10.1088/1009-0630/10/1/07CrossRefGoogle Scholar
Kaneko, T., Baba, K., Harada, T. and Hatakeyama, R. 2009a Novel gas–liquid interfacial plasmas for synthesis of metal nanoparticles. Plasma Process. Polym. 6 (11), 713718. doi: 10.1002/ppap.200900029CrossRefGoogle Scholar
Kaneko, T., Baba, K., Harada, T. and Hatakeyama, R. 2009b Gas–liquid interfacial plasmas: basic properties and applications to nanomaterial synthesis, Plasma Phys. Control. Fusion. 51, 124011. doi: 10.1088/0741-3335/51/12/124011CrossRefGoogle Scholar
Kaneko, T., Baba, K. and Hatakeyama, R. 2009c Static gas–liquid interfacial direct current discharge plasmas using ionic liquid cathode. J. Appl. Phys. 105, 103306. doi: 10.1063/1.3133213CrossRefGoogle Scholar
Kaneko, T., Chen, Q., Harada, T. and Hatakeyama, R. 2011 Structural and reactive kinetics in gas–liquid interfacial plasmas. Plasma Sources Sci. Technol. 20, 034014. doi: 10.1088/0963-0252/20/3/034014CrossRefGoogle Scholar
Kokorin, A. 2011 Ionic Liquids: Theory, Properties, New Approaches, Ch. 22. Croatia: InTech.CrossRefGoogle Scholar
Liang, X., Wang, Z.-J., Liu, C.-J. 2010 Size-controlled synthesis of colloidal gold nanoparticles at room temperature under the influence of glow discharge. Nanoscale Res Lett. 5, 124129.CrossRefGoogle Scholar
Meiss, S. A., Rohnke, M., Kienle, L., El Abedin, S. Z., Endres, F. and Janek, J. 2007 Employing plasmas as gaseous electrodes at the free surface of ionic liquids: deposition of nanocrystalline silver particles. Chem. Phys. Chem. 8, 5053. doi: 10.1002/cphc.200600582CrossRefGoogle ScholarPubMed
Poelleth, M., Meiss, A., Rohnke, M., Kienle, L., Zein El Abedin, S., Endres, F. and Janek, J. 2007 Deposition of metal nanoparticles at ionic-liquid ∣ plasma interfaces. Proceedings of 28th ICPIG, Prague, Czech Republic, July 15–20, topic number 13.Google Scholar
Polyakov, O. V., Badalyan, A. M., Bakhturova, L. F. 2002 The water degradation yield and spatial distribution of primary radicals in the near-discharge volume of an electrolytic cathode. High Energy Chem. 36 (5), 280284.CrossRefGoogle Scholar
Polyakov, O. V., Badalyan, A. M., Bakhturova, L. F. 2003 The yields of radical products in water decomposition under discharges with electrolytic electrodes. High Energy Chem. 37 (5), 322327.CrossRefGoogle Scholar
Susanta, K. S. G., Rajeshwar, S., Ashok, K. S. A. 1998 Study on the origin of non-faradaic behavior of anodic contact glow discharge electrolysis. J. Electrochem. Soc. 145 (7), 22092213.Google Scholar
Vyalykh, D. V., Dubinov, A. E., Mikheev, K. E., Yu, N. L., L'vov, I. L., Sadovo, S. A. and Selemir, V. D. 2005 Experimental study of the stability of the interface between a liquid electrolyte and the glow discharge plasma. Tech. Phys. 50 (10), 13741375.CrossRefGoogle Scholar
Wei, Z. and Liu, C.-J. 2011 Synthesis of monodisperse gold nanoparticles in ionic liquid by applying room temperature plasma. Mater. Lett. 65, 353355.CrossRefGoogle Scholar
Xie, Y.-B. and Liu, C.-J. 2008 Stability of ionic liquids under the influence of glow discharge plasmas. Plasma Process. Polym. 5, 239245.CrossRefGoogle Scholar
Yan, Z. C., Li, C., Lin, W. H. 2009 Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. Int. J. Hydrog. Energy 3 (4), 4855.CrossRefGoogle Scholar
Zein El Abedin, S., Polleth, M., Meiss, S. A., Janek, J. and Endres, F. 2007 Ionic liquids as green electrolytes for the electrodeposition of nanomaterials. Green Chem. 9, 549553.CrossRefGoogle Scholar
Zong-Cheng, Y., Li, C. and Hong-Lin, W. 2006 Experimental study of plasma under-liquid electrolysis in hydrogen generation. Chin. J. Process Eng. 6 (3), 396401.Google Scholar