Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T14:35:54.399Z Has data issue: false hasContentIssue false

Incidence angle dependence of Langmuir turbulence and artificial ionospheric layers driven by high-power HF-heating

Published online by Cambridge University Press:  06 November 2014

B. Eliasson*
Affiliation:
Departments of Physics and Astronomy, University of Maryland, College Park, Maryland, USA SUPA, Physics Department, University of Strathclyde, Glasgow, Scotland, UK
G. Milikh
Affiliation:
Departments of Physics and Astronomy, University of Maryland, College Park, Maryland, USA
X. Shao
Affiliation:
Departments of Physics and Astronomy, University of Maryland, College Park, Maryland, USA
E. V. Mishin
Affiliation:
Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, Albuquerque, NM, USA
K. Papadopoulos
Affiliation:
Departments of Physics and Astronomy, University of Maryland, College Park, Maryland, USA
*
Email address for correspondence: [email protected]

Abstract

We have numerically investigated the development of strong Langmuir turbulence (SLT) and associated electron acceleration at different angles of incidence of ordinary (O) mode pump waves. For angles of incidence within the Spitze cone, the turbulence initially develops within the first maximum of the Airy pattern near the plasma resonance altitude. After a few milliseconds, the turbulent layer shifts downwards by about 1 km. For injections outside the Spitze region, the turning point of the pump wave is at lower altitudes. Yet, an Airy-like pattern forms here, and the turbulence development is quite similar to that for injections within the Spitze. SLT leads to the acceleration of 10–20 eV electrons that ionize the neutral gas thereby creating artificial ionospheric layers. Our numerical modeling shows that most efficient electron acceleration and ionization occur at angles between the magnetic and geographic zenith, where SLT dominates over weak turbulence. Possible effects of the focusing of the electromagnetic beam on magnetic field-aligned density irregularities and the finite heating beam width at the magnetic zenith are also discussed. The results have relevance to ionospheric heating experiments using ground-based, high-power radio transmitters to heat the overhead plasma, where recent observations of artificial ionization layers have been made.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Eliasson, B. 2013 Full-scale simulations of ionospheric Langmuir turbulence. Mod. Phys. Lett. B 27 (8), 1330 005, doi: 10.1142/S0217984913300056.Google Scholar
Eliasson, B., Shao, X., Milikh, G., Mishin, E. V. and Papadopoulos, K. 2012 Numerical modeling of artificial ionospheric layers driven by high-power HF-heating. J. Geophys. Res. 117, A10 321, doi: 10.1029/2012JA018105.Google Scholar
Gurevich, A. V., Zybin, K. P., Carlson, H. C. and Pedersen, T. 2002 Magnetic zenith effect in ionospheric modifications. Phys. Lett. A 305, 264274.CrossRefGoogle Scholar
Hansen, J. D., Morales, G. J., Duncan, L. M., Maggs, J. E. and Dimonte, G. 1990 Large-scale ionospheric modifications produced by nonlinear refraction of an hf wave. Phys. Rev. Lett. 65, 3285.CrossRefGoogle ScholarPubMed
Honary, F., Borisov, N., Beharrell, M. and Senior, A. 2011 Temporal development of the magnetic zenith effect. J. Geophys. Res. 116, A06 309.Google Scholar
Isham, B., Rietveld, M. T., Hagfors, T., La Hoz, C., Mishin, E., Kofman, W., Leyser, T. B. and van Eyken, A. P. 1999 Aspect angle dependence of HF enhanced incoherent backscatter. Adv. Space Res. 24 (8), 10031006, doi: 10.1016/S0273-1177(99)00555-4.CrossRefGoogle Scholar
Mishin, E. and Pedersen, T. 2011 Ionizing wave via high-power HF acceleration. Geophys. Res. Lett. 38, L01 105, doi: 10.1029/2010GL046045.CrossRefGoogle Scholar
Mjølhus, E. 1990 On linear mode conversion in a magnetized plasma. Radio Sci. 25 (6), 13211339.CrossRefGoogle Scholar
Mjølhus, E., Hanssen, A. and DuBois, D. F. 1995. Radiation from electromagnetically driven Langmuir turbulence. J. Geophys. Res. 100 (A9), 17 52717 541, doi: 10.1029/95JA01158.Google Scholar
Mjølhus, E., Helmersen, E. and DuBois, D. F. 2003 Geometric aspects of HF driven Langmuir turbulence in the ionosphere. Nonlin. Proc. Geophys. 10, 151177, doi: 10.5194/npg-10-151-2003.Google Scholar
Pedersen, T., Gustavsson, B., Mishin, E., Kendall, E., Mills, T., Carlson, H. C. and Snyder, A. L. 2010 Creation of artificial ionospheric layers using high-power HF waves. Geophys. Res. Lett. 37, L02 106, doi: 10.1029/2009GL041895.CrossRefGoogle Scholar
Pedersen, T., Gustavsson, B., Mishin, E., MacKenzie, E., Carlson, H. C., Starks, M. and Mills, T. 2009 Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophys. Res. Lett. 36, L18 107, doi: 10.1029/2009GL040047.Google Scholar
Rees, M. H. 1989 Physics and Chemistry of the Upper Atmosphere. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Sagdeev, R. and Galeev, A. 1969 Nonlinear Plasma Theory. New York: Benjamin.Google Scholar
Schunk, R. W. and Nagy, A. N. 2000 Ionospheres - Physics, Plasma Physics and Chemistry. Cambridge, UK: Cambridge University Press.Google Scholar
Sergeev, E., Grach, S., Shindin, A., Mishin, E., Bernhardt, P., Briczinski, S., Isham, B., Broughton, M., LaBelle, J. and Watkins, B. 2013 Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP. Phys. Rev. Lett. 110, 065002, doi: 10.1103/PhysRevLett.110.065002.CrossRefGoogle ScholarPubMed
Stix, T. H. 1992 Waves in Plasmas. New York: American Institute of Physics.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. New York: Wiley.Google Scholar
Zakharov, V. E. 1972 Collapse of Langmuir waves. Soviet J. Exp. Theor. Phys. (JETP), 39, 908.Google Scholar