Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T01:29:22.705Z Has data issue: false hasContentIssue false

A Fokker—Planck treatment of non-linearly interacting waves

Published online by Cambridge University Press:  13 March 2009

I. Cook
Affiliation:
United Kingdom Atomic Energy Authority, Research Group, Culham Laboratory, Abingdon, Berks.

Abstract

The statistical properties of non-linearly interacting waves are considered from a physically motivated viewpoint. A Fokker-Planck wave transport equation is derived. In certain circumstances an H theorem can be proved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benney, D. J. & Newell, A. C. 1969 Stud. Appl. Math. 48, 29.CrossRefGoogle Scholar
Betchov, R. 1966 Dynamics of Fluids and Plasmas (ed. Pai, S. I.) p. 215. Academic.Google Scholar
Davidson, R. C. 1966 Plasma Physics Laboratory, Princeton University, MATT 496.Google Scholar
Hasselmann, K. 1967 Proc. R. Soc. A 299, 77.Google Scholar
Malfliet, W. P. M. 1970 Phys. Lett. 31A, 138.CrossRefGoogle Scholar
Montgomery, D. 1967 Lectures in Theoretical Physics 9C (ed. Brittin, W. E., Barut, A. O. and Guenin, M.), p. 15. Gordon and Breach.Google Scholar
Orszag, S. A. 1966 Plasma Physics Laboratory, Princeton University, PPLAF 13.Google Scholar
Peierls, R. E. 1929 Ann. Phys. 3, 1055.CrossRefGoogle Scholar
Prigogine, I. 1962 Non-Equilibrium Statistical Mechanics. Interscience.Google Scholar
Saffmann, P. G. 1967 Proc. R. Soc. A 299, 101.Google Scholar
Van, Kampen N. G. 1962 Fundamental Problems in Statistical Mechanics (ed. Cohen, E. G.), p. 173. North-Holland.Google Scholar