Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T19:15:26.030Z Has data issue: false hasContentIssue false

Equilibrium configurations of Vlasov plasmas carrying a current component along an external magnetic field

Published online by Cambridge University Press:  13 March 2009

J. R. Kan
Affiliation:
Radiophysics Laboratory, Dartmouth College, Hanover, New Hamphsire

Abstract

A class of equilibrium configurations of Vlasov plasmas carrying a current component along an external magnetic field is presented. The present slab model contains the diamagnetic current jy, and the field-aligned current jz for arbitrary βc (= particle pressure/magnetic pressure of the applied constant field). For fixed βc and field-aligned current, our model admits a family of equilibrium solutions in which the diamagnetic currents range from zero to a maximum value. The amount of diamagnetic current flowing in a machine depends on the width of the machine, the field-aligned current and other plasma parameters. The Helmholtz free energy of the system is calculated under the constraints that the total number of particles and the field-aligned current are conserved. The least unstable equilibrium configuration in a machine is obtained by minimizing the free energy under the stated constraints among all equilibria whose plasma widths do not exceed the width of the machine.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bennett, W. H. 1934 Phys. Rev. 45, 890.CrossRefGoogle Scholar
Buneman, O. 1961 Electrodynamics and Fluid Dynamics of Gaseous Plasmas. Brooklyn, N.Y.: Polytechnic Press.Google Scholar
Dimock, D. & Mazzucato, E. 1968 Phys. Rev. Lett. 20, 713.CrossRefGoogle Scholar
Fowler, T. K. 1968 Advances in Plasma Physics, vol. 1 (eds. Simon, A. and Thompson, W. B.). Interscience.Google Scholar
Grad, H. 1961 Comm. Pure Appl. Math. 14, 323.CrossRefGoogle Scholar
Haris, E. G. 1962 Nuovo Cimento, 23, 115.CrossRefGoogle Scholar
Holdren, J. P. 1969 Phys. Fluids, 12, 1059.CrossRefGoogle Scholar
Kan, J. R. 1970 Phys. Rev. Lett. 25, 348.CrossRefGoogle Scholar
Kan, J. R. 1971 Phys. Fluids, 14, 2740.CrossRefGoogle Scholar
Lam, S. H. 1967 Phys. Fluids, 10, 2454.CrossRefGoogle Scholar
Longmire, C. L. 1963 Elementary Plasma Physics. Interscience.Google Scholar
Morozov, A. I. & Solov'ev, L. S. 1961 Soviet Phys. JETP, 13, 927.Google Scholar
Nicholson, R. B. 1963 Phys. Fluids, 6, 1581.CrossRefGoogle Scholar
Parker, E. N. 1967 J. Geophys. Res. 72, 2315.CrossRefGoogle Scholar
Schmidt, G. 1966 Physics of High Temperature Plasmas. Academic.Google Scholar
Sestero, A. & Zannetti, M. 1967 Phys. Rev. Lett. 19, 1377.CrossRefGoogle Scholar
Su, S. & Sonnerup, B. U. Ö. 1971 J. Geophys. Res. 76, 5181.CrossRefGoogle Scholar
Weibel, E. S. 1959 Phys. Fluids, 2, 52.CrossRefGoogle Scholar