Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T21:17:35.792Z Has data issue: false hasContentIssue false

Enhanced laser-driven proton acceleration with gas–foil targets

Published online by Cambridge University Press:  19 November 2020

Dan Levy*
Affiliation:
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot76100, Israel Laboratoire d'Optique Appliquée, École Polytechnique-ENSTA- CNRS, Institut Polytechnique de Paris, 91761Palaiseau Cedex, France
X. Davoine
Affiliation:
Université Paris-Saclay, CEA, LMCE, 91680Bruyères-le-Châtel, France
A. Debayle
Affiliation:
Université Paris-Saclay, CEA, LMCE, 91680Bruyères-le-Châtel, France
L. Gremillet
Affiliation:
Université Paris-Saclay, CEA, LMCE, 91680Bruyères-le-Châtel, France
V. Malka
Affiliation:
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot76100, Israel Laboratoire d'Optique Appliquée, École Polytechnique-ENSTA- CNRS, Institut Polytechnique de Paris, 91761Palaiseau Cedex, France
*
Email address for correspondence: [email protected]

Abstract

We study numerically the mechanisms of proton acceleration in gas–foil targets driven by an ultraintense femtosecond laser pulse. The target consists of a near-critical-density hydrogen gas layer of a few tens of microns attached to a $2\ \mathrm {\mu }$m-thick solid carbon foil with a contaminant thin proton layer at its back side. Two-dimensional particle-in-cell simulations show that, at optimal gas density, the maximum energy of the contaminant protons is increased by a factor of $\sim$4 compared with a single foil target. This improvement originates from the near-complete laser absorption into relativistic electrons in the gas. Several energetic electron populations are identified, and their respective effect on the proton acceleration is quantified by computing the electrostatic fields that they generate at the protons’ positions. While each of those electron groups is found to contribute substantially to the overall accelerating field, the dominant one is the relativistic thermal bulk that results from the nonlinear wakefield excited in the gas, as analysed recently by Debayle et al. (New J. Phys., vol. 19, 2017, 123013). Our analysis also reveals the important role of the neighbouring ions in the acceleration of the fastest protons, and the onset of multidimensional effects caused by the time-increasing curvature of the proton layer.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bin, J. H., Ma, W. J., Wang, H. Y., Streeter, M. J. V., Kreuzer, C., Kiefer, D., Yeung, M., Cousens, S., Foster, P. S., Dromey, B., et al. 2015 Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett. 115 (6), 064801.CrossRefGoogle ScholarPubMed
Bin, J. H., Yeung, M., Gong, Z., Wang, H. Y., Kreuzer, C., Zhou, M. L., Streeter, M. J. V., Foster, P. S., Cousens, S., Dromey, B., et al. 2018 Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma. Phys. Rev. Lett. 120 (7), 074801.CrossRefGoogle ScholarPubMed
Borghesi, M., Campbell, D. H., Schiavi, A., Haines, M. G., Willi, O., MacKinnon, A. J., Patel, P., Gizzi, L. A., Galimberti, M., Clarke, R. J., et al. 2002 Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9 (5), 22142220.CrossRefGoogle Scholar
Clark, E. L., Krushelnick, K., Davies, J. R., Zepf, M., Tatarakis, M., Beg, F. N., Machacek, A., Norreys, P. A., Santala, M. I. K., Watts, I., et al. 2000 Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84 (4), 670673.CrossRefGoogle ScholarPubMed
Crow, J. E., Auer, P. L. & Allen, J. E. 1975 The expansion of a plasma into a vacuum. J. Plasma Phys. 14 (1), 6576.CrossRefGoogle Scholar
Dalui, M., Kundu, M., Trivikram, T. M., Rajeev, R., Ray, K. & Krishnamurthy, M. 2014 Bacterial cells enhance laser driven ion acceleration. Sci. Rep. 4, srep06002.Google ScholarPubMed
Debayle, A., Mollica, F., Vauzour, B., Wan, Y., Flacco, A., Malka, V., Davoine, X. & Gremillet, L. 2017 Electron heating by intense short-pulse lasers propagating through near-critical plasmas. New J. Phys. 19 (12), 123013.CrossRefGoogle Scholar
Debayle, A., Sanz, J., Gremillet, L. & Mima, K. 2013 Toward a self-consistent model of the interaction between an ultra-intense, normally incident laser pulse with an overdense plasma. Phys. Plasmas 20 (5), 053107.CrossRefGoogle Scholar
Denavit, J. 1992 Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69 (21), 30523055.CrossRefGoogle ScholarPubMed
d'Humières, E., Lefebvre, E., Gremillet, L. & Malka, V. 2005 Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys. Plasmas 12 (6), 062704.CrossRefGoogle Scholar
Esirkepov, T. Z. 2001 Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput. Phys. Commun. 135 (2), 144153.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S. V., Mourou, G. & Tajima, T. 2004 Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92 (17), 175003.CrossRefGoogle ScholarPubMed
Esirkepov, T., Yamagiwa, M. & Tajima, T. 2006 Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96 (10), 105001.CrossRefGoogle ScholarPubMed
Fiuza, F., Fonseca, R. A., Tonge, J., Mori, W. B. & Silva, L. O. 2012 Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers. Phys. Rev. Lett. 108 (23), 235004.CrossRefGoogle ScholarPubMed
Fuchs, J., Antici, P., d'Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C. A., Kaluza, M., Malka, V., Manclossi, M., et al. 2006 Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2 (1), 4854.CrossRefGoogle Scholar
Fukuda, Y., Faenov, A. Y., Tampo, M., Pikuz, T. A., Nakamura, T., Kando, M., Hayashi, Y., Yogo, A., Sakaki, H., Kameshima, T., et al. 2009 Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 103 (16), 165002.CrossRefGoogle Scholar
Gurevich, A. V., Pariiskaya, L. V. & Pitaevskii, L. P. 1966 Self-similar motion of rarefied plasma. Sov. Phys. JETP 22 (2), 449454.Google Scholar
Haberberger, D., Tochitsky, S., Fiuza, F., Gong, C., Fonseca, R. A., Silva, L. O., Mori, W. B. & Joshi, C. 2012 Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys. 8 (1), 9599.CrossRefGoogle Scholar
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V. T. 2008 Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. Spec. Top. Accel. Beams 11 (3), 031301.CrossRefGoogle Scholar
Kruer, W. L. & Estabrook, K. 1985 $J\times B$ heating by very intense laser light. Phys. Fluids (1958–1988) 28 (1), 430432.CrossRefGoogle Scholar
Ledingham, K. W. D., McKenna, P. & Singhal, R. P. 2003 Applications for nuclear phenomena generated by ultra-intense lasers. Science 300 (5622), 11071111.CrossRefGoogle ScholarPubMed
Lefebvre, E., Cochet, N., Fritzler, S., Malka, V., Aléonard, M.-M., Chemin, J.-F., Darbon, S., Disdier, L., Faure, J., Fedotoff, A., et al. 2003 Electron and photon production from relativistic laser–plasma interactions. Nucl. Fusion 43 (7), 629633.CrossRefGoogle Scholar
Levy, D., Bernert, C., Rehwald, M., Andriyash, I. A., Assenbaum, S., Kluge, T., Kroupp, E., Obst-Huebl, L., Pausch, R., Schultze-Makuch, A., et al. 2020 Laser-plasma proton acceleration with a combined gas-foil target. New J. Phys. 22.CrossRefGoogle Scholar
Liu, J.-L., Chen, M., Zheng, J., Sheng, Z.-M. & Liu, C.-S. 2013 Three dimensional effects on proton acceleration by intense laser solid target interaction. Phys. Plasmas 20 (6), 063107.Google Scholar
Ma, W. J., Kim, I. J., Yu, J. Q., Choi, I. W., Singh, P. K., Lee, H. W., Sung, J. H., Lee, S. K., Lin, C., Liao, Q., et al. 2019 Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil. Phys. Rev. Lett. 122 (1), 014803.CrossRefGoogle ScholarPubMed
Macchi, A., Cattani, F., Liseykina, T. V. & Cornolti, F. 2005 Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94 (16), 165003.CrossRefGoogle ScholarPubMed
Macchi, A., Veghini, S. & Pegoraro, F. 2009 “Light sail” acceleration reexamined. Phys. Rev. Lett. 103 (8), 085003.CrossRefGoogle ScholarPubMed
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V. Y. 2000 Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84 (18), 41084111.CrossRefGoogle ScholarPubMed
Malka, V., Faure, J., Gauduel, Y. A., Lefebvre, E., Rousse, A. & Phuoc, K. T 2008 Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4 (6), 447453.CrossRefGoogle Scholar
Margarone, D., Klimo, O., Kim, I. J., Prokůpek, J., Limpouch, J., Jeong, T. M., Mocek, T., Pšikal, J., Kim, H. T., Proška, J., et al. 2012 Laser-driven proton acceleration enhancement by nanostructured foils. Phys. Rev. Lett. 109 (23), 234801.CrossRefGoogle ScholarPubMed
Mora, P. 2003 Plasma expansion into a vacuum. Phys. Rev. Lett. 90 (18), 185002.CrossRefGoogle ScholarPubMed
Nakamura, T., Bulanov, S. V., Esirkepov, T. Z. & Kando, M. 2010 High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett. 105 (13), 135002.CrossRefGoogle ScholarPubMed
Nakamura, T., Tampo, M., Kodama, R., Bulanov, S. V. & Kando, M. 2010 Interaction of high contrast laser pulse with foam-attached target. Phys. Plasmas 17 (11), 113107.CrossRefGoogle Scholar
Passoni, M., Sgattoni, A., Prencipe, I., Fedeli, L., Dellasega, D., Cialfi, L., Choi, I. W., Kim, I. J., Janulewicz, K. A., Lee, H. W., et al. 2016 Toward high-energy laser-driven ion beams: nanostructured double-layer targets. Phys. Rev. Accel. Beams 19 (6), 061301.CrossRefGoogle Scholar
Passoni, M., Zani, A., Sgattoni, A., Dellasega, D., Macchi, A., Prencipe, I., Floquet, V., Martin, P., Liseykina, T. V. & Ceccotti, T. 2014 Energetic ions at moderate laser intensities using foam-based multi-layered targets. Plasma Phys. Control. Fusion 56 (4), 045001.CrossRefGoogle Scholar
Patel, P. K., Mackinnon, A. J., Key, M. H., Cowan, T. E., Foord, M. E., Allen, M., Price, D. F., Ruhl, H., Springer, P. T. & Stephens, R. 2003 Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91 (12), 125004.CrossRefGoogle ScholarPubMed
Prencipe, I., Sgattoni, A., Dellasega, D., Fedeli, L., Cialfi, L., Choi, I. W., Kim, I. J., Janulewicz, K. A., Kakolee, K. F., Lee, H. W., et al. 2016 Development of foam-based layered targets for laser-driven ion beam production. Plasma Phys. Control. Fusion 58 (3), 034019.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z.-M. & Meyer-ter Vehn, J. 1999 Particle acceleration in relativistic laser channels. Phys. Plasmas 6 (7), 28472854.CrossRefGoogle Scholar
Qiao, B., Kar, S., Geissler, M., Gibbon, P., Zepf, M. & Borghesi, M. 2012 Dominance of radiation pressure in ion acceleration with linearly polarized pulses at intensities of $10^{21}\,\rm W cm^{-2}$. Phys. Rev. Lett. 108 (11), 115002.CrossRefGoogle Scholar
Robinson, A. P. L., Zepf, M., Kar, S., Evans, R. G. & Bellei, C. 2008 Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10 (1), 013021.CrossRefGoogle Scholar
Schlegel, T., Naumova, N., Tikhonchuk, V. T., Labaune, C., Sokolov, I. V. & Mourou, G. 2009 Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas 16 (8), 083103.CrossRefGoogle Scholar
Sgattoni, A., Londrillo, P., Macchi, A. & Passoni, M. 2012 Laser ion acceleration using a solid target coupled with a low-density layer. Phys. Rev. E 85 (3), 036405.CrossRefGoogle ScholarPubMed
Silva, L. O., Marti, M., Davies, J. R., Fonseca, R. A., Ren, C., Tsung, F. S. & Mori, W. B. 2004 Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92 (1), 015002.CrossRefGoogle ScholarPubMed
Snavely, R. A., Key, M. H., Hatchett, S. P., Cowan, T. E., Roth, M., Phillips, T. W., Stoyer, M. A., Henry, E. A., Sangster, T. C., Singh, M. S., et al. 2000 Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85 (14), 29452948.CrossRefGoogle ScholarPubMed
Sokolov, I. V. 2013 Alternating-order interpolation in a charge-conserving scheme for particle-in-cell simulations. Comput. Phys. Commun. 184 (2), 320328.CrossRefGoogle Scholar
Vieira, J., Fiúza, F., Silva, L. O., Tzoufras, M. & Mori, W. B. 2010 Onset of self-steepening of intense laser pulses in plasmas. New J. Phys. 12 (4), 045025.CrossRefGoogle Scholar
Wang, H. Y., Yan, X. Q., Chen, J. E., He, X. T., Ma, W. J., Bin, J. H., Schreiber, J., Tajima, T. & Habs, D. 2013 Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse. Phys. Plasmas 20 (1), 013101.CrossRefGoogle Scholar
Wilks, S. C., Kruer, W. L., Tabak, M. & Langdon, A. B. 1992 Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69 (9), 13831386.CrossRefGoogle ScholarPubMed
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A. & Snavely, R. A. 2001 Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas (1994–present) 8 (2), 542549.CrossRefGoogle Scholar
Yin, L., Albright, B. J., Bowers, K. J., Jung, D., Fernández, J. C. & Hegelich, B. M. 2011 Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. Phys. Rev. Lett. 107 (4), 045003.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B. J., Hegelich, B. M., Bowers, K. J., Flippo, K. A., Kwan, T. J. T. & Fernández, J. C. 2007 Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14 (5), 056706.CrossRefGoogle Scholar
Zhang, Y. & Krasheninnikov, S. I. 2019 Electron dynamics in laser and quasi-static transverse electric and longitudinal magnetic fields. Plasma Phys. Control. Fusion 61 (7), 074008.CrossRefGoogle Scholar