Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T01:04:44.128Z Has data issue: false hasContentIssue false

Energy absorption in the continuous spectrum of ideal MHD

Published online by Cambridge University Press:  13 March 2009

J. A. Tataronis
Affiliation:
Courant Institute of Mathematical Sciences, New York University

Extract

The relationship between energy absorption and the continuous frequency spectrum of the linearized equations of ideal MHD is investigated. We limit ourselves to incompressible fluid perturbations for which the continuum stems from resonant surfaces where the oscillation frequency equals the local frequency of an Alfvén wave. Details of this absorption process are illustrated by obtaining the response of the diffuse sheet pinch to an external current source. Expressions are derived that give the rate at which energy is transferred to the plasma, and show the spatial distribution of the absorbed energy. The results indicate that the absorption is enhanced if the plasma profile has regions of large spatial gradients. This enhanced absorption is a consequence of the presence of surface waves.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, D. E. & Ignat, D. W. 1969 Phys. Fluids, 12, 697.CrossRefGoogle Scholar
Barston, E. M. 1964 Ann. Phys. 29, 282.CrossRefGoogle Scholar
Bonis, J. P. 1968 Ph.D. thesis, Princeton University.Google Scholar
Brownell, J. H. 1972 Physica, 61, 289.CrossRefGoogle Scholar
Goedbloed, J. P. & Sakanaka, P. H. 1974 Phys. Fluids. (To be published.)Google Scholar
Grad, H. 1969 Phys. Today, 22, 34.CrossRefGoogle Scholar
Grad, H. 1973 Proc. Nat. Acad. Sci. USA, 70, 3277.CrossRefGoogle Scholar
Grossmann, W., Kaufmann, M. & Neuhauser, J. 1973 Proc. 3rd Int. Symp. on Toroidal Plasma Confinement, Garching, E 3.Google Scholar
Grossmann, W. & Tataronis, J. A. 1973 Z. Phys. 261, 217.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1974 Phys. Rev. Lett. 32, 454.CrossRefGoogle Scholar
Landau, L. 1942 J. Phys. USSR, 10, 25.Google Scholar
Puri, S. 1973 Max-Planck-Institut für Plasmaphysik, Garching, IPP Rep. IV/59.Google Scholar
Stepanov, K. N. 1965 Soviet Phys. JETP, 10, 773.Google Scholar
Sturrock, P. A. 1961 Stanford University MW Lab. Rep. 784.Google Scholar
Tataronis, J. A. 1973 Bull. Am. Phys. Soc. 18, 1291.Google Scholar
Tataronis, J. A. & Grossmann, W. 1972. Proc. Conf. on Pulsed High-Beta Plasmas, Garching, IPP Rep. 1/127, B 5, B 6.Google Scholar
Tataronis, J. A. & Grossmann, W. 1973 Z. Phys. 261, 203.CrossRefGoogle Scholar
Uberoi, C. 1972 Phys. Fluids, 15, 1673.CrossRefGoogle Scholar
Watson, G. N. 1958 A Treatise on the Theory of Bessel Functions (2nd edn.). Cambridge University Press.Google Scholar
Weitzner, H. 1963 Phys. Fluids, 6, 1123.CrossRefGoogle Scholar
Weitzner, H. 1973 Phys. Fluids, 16, 237.CrossRefGoogle Scholar