Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T12:19:28.683Z Has data issue: false hasContentIssue false

Electrostatic instabilities and anomalous transport excited by an energetic ion beam

Published online by Cambridge University Press:  13 March 2009

E. H. da Jornada
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 90000 Porto alegre, RS, Brasil
J. D. Gaffey Jr
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 90000 Porto alegre, RS, Brasil
M. Zales Caponi
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 90000 Porto alegre, RS, Brasil

Abstract

Electrostatic instabilities excited by an energetic ion beam injected at an arbitrary angle with respect to the magnetic field in a collisionless plasma are discussed. Threshold conditions on the angle of injection and on the beam density are derived for the cross-field ion-ion mode, the modified two-stream mode and the ion-acoustic modes. The time evolution of the momentum and the thermal energy of each plasma component in the presence of the instabilities is calculated from moments of the quasi-linear equation. The background ions are significantly heated by most of the waves, exceptions being the modified two-stream mode and the resonant ion-acoustic mode. A wave with phase velocity close to the slow ion-acoustic wave has been found when the beam has a small density and a velocity greater than the acoustic speed by approximately a factor of five.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, D. R. 1972 Phys. Rev. Lett. 28, 1189.CrossRefGoogle Scholar
Caponi, M. Z. 1972 Ph.D. Thesis, University of Maryland Technical Report 73–016.Google Scholar
Coponi, B. & Bhadra, D. K. 1975 Phys. Fluids, 18, 692.Google Scholar
da Jornada, E. H., Gaffey, J. D. & Caponi, M. Z. 1979 J. Plasma Phys. 21, 193.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Physics. Academic.Google Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function Academic.Google Scholar
Fried, B. D. & Wrong, A. Y. 1966 Phys. Fluids, 9, 1084.CrossRefGoogle Scholar
Gaffey, J. D. 1976 J. Plasma Phys. 16, 171.CrossRefGoogle Scholar
Gresillon, D. & Doveil, F. 1975 Phys. Rev. Lett. 34, 77.CrossRefGoogle Scholar
Jassby, D. L. 1977 Nucl. Fusion, 17, 309.CrossRefGoogle Scholar
Riviere, A. C. & Sweetman, D. R. 1970 Bull. Am. Phys. Soc. 15, 1440.Google Scholar
Stewart, L. D. 1977 Princeton University preprint PPPL1391.Google Scholar
Tang, W. M. 1978 Nucl. Fusion, 18, 1089.CrossRefGoogle Scholar
Taylor, R. J. & Coroniti, F. V. 1972 Phys. Rev. Lett. 29, 34.CrossRefGoogle Scholar
Yamada, M., Seiler, S., Hendel, H. W. & Ikezi, H. 1976 Phys. Rev. Lett. 36, 319.Google Scholar