Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T14:47:49.106Z Has data issue: false hasContentIssue false

Electron oscillations of a collisionless plasma in a static electric field

Published online by Cambridge University Press:  13 March 2009

Christer Wahlberg
Affiliation:
Department of Theoretical Electrotechnics, Institute of Technology, Uppsala University, Sweden

Abstract

The influence of a static electric field on electron oscillations of (i) a cold beam of electrons and (ii) a hot non-drifting plasma is investigated. The importance of the relative strength of the field is emphasized. In the weak field limit the oscillations are adiabatic, manifested by the existence of adiabatic invariants, preservation of eigenmodes and absence of reflexion. If the field is strong, however, interesting new features, such as mutual coupling of eigenmodes and wave reflexion, appear. Possible stability properties of a monotonic electrostatic transition (shock, double layer) are also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, R. D. & Lindstrom, P. J. 1970 Science, 170, 1398.CrossRefGoogle Scholar
Alfvén, H. & Fälthammar, C.-G. 1963 Cosmical Electrodynamics. Clarendon.Google Scholar
Babic, M. & Torvén, S. 1974 Electron and Plasma Phys. Res. Rep. TRITA-EPP-74−02. Royal Inst. of Tech., Stockholm.Google Scholar
Bernstein, I. B., Greene, J. M. & Kruskal, M. D. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Bertrand, P. & Feix, M. R. 1968 Phys. Lett. 28 A, 68.CrossRefGoogle Scholar
Biskamp, D. 1969 J. Plasma Phys. 3, 411.CrossRefGoogle Scholar
Block, L. P. 1972 Cosmic Electrodyn. 3, 349.Google Scholar
Block, L. P. 1975 Proceedings of Thirtieth Nobel Symposium, p. 229. Plenum.Google Scholar
Goertz, C. K. & Joyce, G. 1975 Astrophys. and Space Sci. 32, 165.CrossRefGoogle Scholar
Goldman, M. V. 1970 Phys. Fluids, 13, 1281.CrossRefGoogle Scholar
Haddad, G. I. & Adair, J. E. 1965 IEEE Trans. on Electron Devices, ED12, 536.CrossRefGoogle Scholar
Kindel, J. M. & Kennel, C. F. 1971 J. Geophys. Res. 76, 3055.CrossRefGoogle Scholar
Knorr, G. & Goertz, C. K. 1974 Astrophys. and Space Sci. 31, 209.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1960 Mechanics. Pergamon.Google Scholar
Lindberg, L. & Kristoferson, L. 1971 Cosmic Electrodyn. 2, 305.Google Scholar
Lindberg, L. & Kristoferson, L. 1972 Electron and Plasma Phys. Res. Rep. TRITA. EPP-72–32. Royal Inst. of Tech., Stockholm.Google Scholar
Lutsenko, E. I., Sereda, N. D. & Kontsevoi, L. M. 1976 Soviet Phys. Tech. Phys. 20, 498.Google Scholar
Montgomery, D. & Joyce, G. 1969 J. Plasma Phys. 3, 1.CrossRefGoogle Scholar
Papadopoulus, K. & Coffey, T. P. 1974 J. Geophys. Res. 79, 1558.CrossRefGoogle Scholar
Penrose, O. 1960 Phys. Fluids, 3, 258.CrossRefGoogle Scholar
Persson, H. 1963 Phys. Fluids, 6, 1756.CrossRefGoogle Scholar
Persson, H. 1966 Phys. Fluids, 9, 1090.CrossRefGoogle Scholar
Smullin, L. D. 1951 J. Appl. Phys. 22, 1496.CrossRefGoogle Scholar
Sturrock, P. A. 1958 Phys. Rev. 112, 1488.CrossRefGoogle Scholar
Tien, P. K. & Field, L. M. 1952 Proc. Inst. Radio Engrs. 40, 688.Google Scholar
Wahlberg, C. 1977 a Proc. Third International (Kiev) Conference on Plasma Theory. (To be published.)Google Scholar
Wahlberg, C. 1977 b J. Phys. A 10, 867.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar