Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T02:20:24.025Z Has data issue: false hasContentIssue false

The effect of a static magnetic field on the growth of a rippled electromagnetic beam

Published online by Cambridge University Press:  13 March 2009

Arvinder Singh
Affiliation:
Physics Department, Guru Nanak Dev University, Amritsar-143005, India
Tarsem Singh
Affiliation:
Physics Department, Guru Nanak Dev University, Amritsar-143005, India

Abstract

This paper presents an investigation of the growth of a radially symmetrical ripple, superimposed on a Gaussian electromagnetic beam in a collisionless magnetized plasma. On account of the non-uniform intensity distribution of the main beam, the d.c. component of the ponderomotive force becomes finite and leads to modification of the background density. There is feedback from the main beam to the ripple, which subsequently grows at the cost of the pump wave. The effect of the plasma and pump parameters is studied in detail. An interesting feature is that the ripple always grows, irrespective of the phase relationship of the main beam and the ripple. This is due to strong self-focusing of the main beam for the chosen set of parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbi, S. C. & Mahr, H. 1971 Phys. Rev. Lett. 26, 604.CrossRefGoogle Scholar
Akhmanov, S. A., Sukhorukov, A. P. & Khockhlov, R. V. 1968 Soviet Phys. Usp. 10, 609.Google Scholar
Bingham, R. & Lashmore Davies, C. N. 1976 Nucl. Fusion, 16, 67.CrossRefGoogle Scholar
Cohen, B. I. & Max, C. E. 1979 Phys. Fluids, 22, 1115.CrossRefGoogle Scholar
Drake, J. F., Kaw, P. K., Lee, Y. C., Schmidt, G., Liu, C. S. & Rosenbluth, M. N. 1974 Phys. Fluids, 17, 778.Google Scholar
Ginzburg, V. L. 1964 The Propagation of Electromagnetic Waves in Plasmas. Pergamon.Google Scholar
Joshi, C., Clayton, C. E., Yasuda, A. & Chen, F. F. 1982 J. Appl. Phys. 53, 215.Google Scholar
Kaw, P. K., Schmidt, G. & Wilcox, T. 1973 Phys. Fluids, 16, 1522.CrossRefGoogle Scholar
Manheimer, W. M. & Ott, E. 1976 Phys. Fluids, 17, 1413.CrossRefGoogle Scholar
Max, C. E., Arons, J. & Langdon, A. B. 1974 Phys. Rev. Lett. 33, 209.CrossRefGoogle Scholar
Perkins, F. W. & Valeo, E. 1974 Phys. Rev. Lett. 32, 1234.CrossRefGoogle Scholar
Sodha, M. S., Ghatak, A. K. & Tripathi, V. K. 1974 Self-Focussing of Laser Beams in Dielectrics, Plasmas and Semiconductors. Tata-McGraw-Hill.Google Scholar
Sodha, M. S., Ghatak, A. K. & Tripathi, V. K. 1976 Progress in Optics, Vol. 13 (ed. Wolf, E.), p. 171. North-Holland.Google Scholar
Sodha, M. S., Singh, T., Singh, D. P. & Sharma, R. P. 1981 a J. Plasma Phys. 25, 255.Google Scholar
Sodha, M. S., Singh, T., Singh, D. P. & Sharma, R. P. 1981 b Phys. Fluids, 24, 914.Google Scholar
Yu, M. Y., Spatschek, K. H. & Shukla, P. K. 1974 Z. Naturforsch. 299, 1737.Google Scholar
Zhizhan, X., Yuguang, X., Guangyu, Y., Zhang, Y., Jiagin, Y. & Lee, P. H. Y. 1983 J. Appl. Phys. 54, 4902.Google Scholar