Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T11:22:39.108Z Has data issue: false hasContentIssue false

Dynamic shielding effects in partially ionized gases

Published online by Cambridge University Press:  13 March 2009

Hong-Sup Hahn
Affiliation:
Brown University
E. A. Mason
Affiliation:
Brown University
E. J. Miller
Affiliation:
Department of Chemical Engineering, University of Delaware
S. I. Sandler
Affiliation:
Department of Chemical Engineering, University of Delaware

Abstract

The effects of dynamic shielding of charged-particle interactions on the predicted values of hte transport properties of partially ionized argon are considered. It is found that, at low degreesof ionization, dynamic shielding effects are of little importance, because charged-particle encounters are infrequent, so that the perturbed Lorentzian method may be used to obtain a rapidly convergent solution. At higher degrees of ionization, where the Chapman–Enskog solution converges rapidly, dynamic shielding effects can be taken into account using the expressions presented in the appendix to this paper. It is also found that the static shielding model, assuming complete shielding by electrons only, yields results that are quite close to those obtained when dynamic shielding is considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. Washington: National Bureau of Standards.Google Scholar
Ahtye, W. F. 1965 NASA TN D-2611.Google Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-Uniform Gases (3rd edn.). Cambridge University Press.Google Scholar
Devoto, R. S. 1966 Phys. Fluids, 9, 1230.CrossRefGoogle Scholar
Devoto, R. S. 1967 a Phys. Fluids, 10, 354.CrossRefGoogle Scholar
Devoto, R. S. 1967 b Phys. Fluids, 10, 2105.CrossRefGoogle Scholar
Devoto, R. S. 1968 J. Plasma Phys. 2, 617.CrossRefGoogle Scholar
Devoto, R. S. 1969 AIAA J. 7, 199.CrossRefGoogle Scholar
Frost, L. S. 1961 J. Appl. Phys. 32, 2029.CrossRefGoogle Scholar
Frost, L. S. & Phelps, A. V. 1964 Phys. Rev. 136, A 1538.CrossRefGoogle Scholar
Gould, H. A. & DeWitt, H. E. 1967 Phys. Rev. 155, 68.CrossRefGoogle Scholar
Hahn, H., Mason, E. A. & Smith, F. J. 1971 Phys. Fluids, 14, 278.CrossRefGoogle Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1964 Molecular Theory of Gases and Liquids(2nd printing). New York: John Wiley.Google Scholar
Itikawa, Y. 1963 J. Phys. Soc. Japan, 18, 1499.CrossRefGoogle Scholar
Kihara, T. 1959 J. Phys. Soc. Japan, 14, 402.CrossRefGoogle Scholar
Kihara, T. & Aono, O. 1963 J. Phys. Soc. Japan, 18, 837.CrossRefGoogle Scholar
Kruger, C. H., Mitchner, M. & Daybelge, U. 1968 AIAA J. 6, 1712.Google Scholar
Li, C. P. & Devoto, R. S. 1968 Phys. Fluids, 11, 448.CrossRefGoogle Scholar
Liboff, R. L. 1959 Phys. Fluids, 2, 40.CrossRefGoogle Scholar
Lohmander, B. & Rittsten, S. 1958 Kungl. Fysiogr. Söllsk. i Lund Fürh. 28, 45.Google Scholar
Mason, E. A., Munn, R. J. & Smith, F. J. 1967 Phys. Fluids, 10, 1827.CrossRefGoogle Scholar
Nighan, W. L. 1969 Phys. Fluids, 12, 162.CrossRefGoogle Scholar
Sandler, S. I. & Mason, E. A. 1969 Phys. Fluids, 12, 71.CrossRefGoogle Scholar
Sandler, S. I.Miller, E. J. & Mason, E. A. 1970 Proceedings of the Fifth Symposium on Thermophysical Properties, p. 342. New York: ASME.Google Scholar
Schweitzer, S. & Mitchner, M. 1966 AIAA J. 4, 1012.CrossRefGoogle Scholar
Williams, R. H. & DeWitt, H. E. 1969 Phys. Fluids, 12, 2326.CrossRefGoogle Scholar