Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T19:09:33.248Z Has data issue: false hasContentIssue false

Continued fraction expansions for the plasma dispersion function

Published online by Cambridge University Press:  13 March 2009

J. H. McCabe
Affiliation:
The Mathematical Institute, University of St Andrews, Fife, Scotland

Abstract

Two continued fraction expansions for the plasma dispersion function are given. The first is a very simple expansion for which error estimates can be obtained and which provides better approximations as the modulus of the argument increases. The second, while not so simple, provides whole range approximations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Martin, P., Donoso, G. & Zamudio-Cristi, J. 1980 J. Math. Phys. 21, 280.CrossRefGoogle Scholar
McCabe, J. H. 1974 Math. Comp. 28, 811.Google Scholar
McCabe, J. H. 1975 J. Inst. Maths. Applics. 15, 363.CrossRefGoogle Scholar
McCabe, J. H. & Murphy, J. A. 1976 J. Inst. Math. Applics. 17, 233.CrossRefGoogle Scholar
Murphy, J. A. & O'Donohoe, M. R. 1977 J. App. Maths. Phys. 28, 1121.Google Scholar
Németh, G., Ág, Á. & Páris, G. Y. 1981 J. Math. Phys. 22, 1192.CrossRefGoogle Scholar
Peratt, A. L. 1984 J. Maths. Phys. 25, 466.CrossRefGoogle Scholar
Rönnmark, K. 1983 Plasma Phys. 25, 699.CrossRefGoogle Scholar
Sato, M. 1984 J. Plasma Phys. 31, 325.CrossRefGoogle Scholar