Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T19:47:19.964Z Has data issue: false hasContentIssue false

Collisionless evolution of ion distributions in the presence of ion cyclotron resonance heating

Published online by Cambridge University Press:  13 March 2009

D. Anderson
Affiliation:
Institute for Electromagnetic Field Theory and EURATOM Fusion Research (SERC), Chalmers University of Technology, S-412 96 Göteborg, Sweden
L.-G. Eriksson
Affiliation:
Institute for Electromagnetic Field Theory and EURATOM Fusion Research (SERC), Chalmers University of Technology, S-412 96 Göteborg, Sweden
M. Lisak
Affiliation:
Institute for Electromagnetic Field Theory and EURATOM Fusion Research (SERC), Chalmers University of Technology, S-412 96 Göteborg, Sweden

Abstract

Explicit analytical solutions are given for the collisionless time evolution of the distribution function for ions absorbing RF wave power through ion cyclotron resonance heating in a tokamak. Two different scenarios are considered: (i) conventional ICRH and (ii) combined neutral beam heating and ICRH with the RF wave frequency tuned to the ion cyclotron resonance frequency of the injected ions. Finally, the effect of particle trapping on the time development of the distribution function is also analysed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D. 1983 J. Plasma Phys. 29, 317.CrossRefGoogle Scholar
Anderson, D., Eriksson, L.-G. & Lisak, M. 1985 Nucl. Fusion, 25, 1751.CrossRefGoogle Scholar
Anderson, D., Hamnén, H., Lisak, M. & Pekkari, L.-O. 1983 Nucl. Fusion, 23, 781.Google Scholar
Blackfield, D. T. & Sharer, J. E. 1982 Nucl. Fusion, 23, 255.CrossRefGoogle Scholar
Campbell, D. J. et al. 1985 Proceedings of 12th European Conference on Controlled Fusion and Plasma Physics, Budapest.Google Scholar
Chin, S. C. 1985 Phys. Fluids, 28, 1371.Google Scholar
Cordey, J. G. 1976 Nucl. Fusion, 16, 499.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series and Products. Academic.Google Scholar
Hellsten, T., Appert, K., Core, W., Hamnén, H. & Succi, S. 1985 Proceedings of 12th European Conference on Controlled Fusion and Plasma Physics, Budapest.Google Scholar
Kaita, R., Goldstone, R. J., Beiersdorfer, P., Herndon, D. L., Hosea, J., Hwang, D. Q., Jobes, F., Meyerhofer, D. D. & Wilson, J. R. 1983 Nucl. Fusion, 23, 1089.CrossRefGoogle Scholar
Kennel, C. F. & Engelmann, F. 1966 Phys. Fluids, 9, 2377.CrossRefGoogle Scholar
Kerbel, G. D. & McCoY, M. G. 1985 Phys. Fluids, 28, 3629.CrossRefGoogle Scholar
Scharer, J. E., Jacquinot, J., Lallia, P. & Sand, F. 1985 Nucl. Fusion, 25, 435.CrossRefGoogle Scholar
Stix, T. H. 1975 Nucl. Fusion, 15, 737.CrossRefGoogle Scholar