Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T19:06:34.205Z Has data issue: false hasContentIssue false

Collisional instability in a rare magnetized plasma: an experimental model for magnetospheric and space plasma study

Published online by Cambridge University Press:  01 June 2009

CONSTANTINE L. XAPLANTERIS*
Affiliation:
Plasma Physics Lab, IMS, NCSR, ‘Demokritos’, Athens, Greece ([email protected])

Abstract

In a suitable experimental device, laboratory plasma is produced with conditions and parameters analogous to magnetospheric plasma; we light a rare plasma in a semi-machine using rf-frequency discharge. Three ranges of low-frequency instabilities appear, one of which is identified as drift, caused by electron–neutral collisions. A full theoretical elaboration adapted to production conditions and geometrical symmetry is carried out; one solution of the dispersion relation is sufficient justification for the existence of the instability. The mathematical analysis also has the ambition to give interpretation for other low-frequency waves. Here we make a sound identification of the instability type as drift resistive due to electron–neutral collisions by an investigation of the growth rate. An agreement between experimental results and the theoretical model is obtained. As in the magnetosphere, an external magnetic field restrains the plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anastassiades, A. and Xaplanteris, C. 1983 J. Phys. Soc. Jpn 52, 492.CrossRefGoogle Scholar
Benilov, S. E. and Power, A. O. 2007 Phys. Plasmas 14, 082101.CrossRefGoogle Scholar
Block, D., Piel, A.Schröder, Ch. and Klinger, T. 2001 Phys. Rev. E 63, 056401.Google Scholar
Chen, F. F. 1965 Phys. Fluids 8, 1323.CrossRefGoogle Scholar
Chen, F. F. 1967 Phys. Fluids 10, 1647.CrossRefGoogle Scholar
Chen, F. F. 1979 Phys. Fluids 22, 2346.CrossRefGoogle Scholar
Chu, K. T., Hendel, W. H. and Politzer, A. P. 1967 Phys. Rev. Lett. 19, 1110.CrossRefGoogle Scholar
D'Angelo, N. 1961 Phys. Fluids 4, 1054.CrossRefGoogle Scholar
Ellis, F. R., Marden-Marshall, E. and Majeski, R. 1980 Plasma Phys. 22, 113.CrossRefGoogle Scholar
Hendel, W. H., Coppi, B., Perkins, F. and Politzer, A. P. 1967 Phys. Rev. Lett. 18, 439.Google Scholar
Marden-Marshall, E., Ellis, F. R. and Walsh, E. J. 1986 Plasma Phys. 28, No 9B.Google Scholar
Mikhailovskii, B. A. et al. 2007 Phys. Plasmas 14, 112108.CrossRefGoogle Scholar
Salimullah, M., Rizwan, M. A., Nambu, M. and Shukla, K. P. 2004 Phys. Rev. E 70, 026404.Google Scholar
Salimullah, M., Sandberg, I. and Shukla, K. P. 2003 Phys. Rev. E 68, 027403.Google Scholar
Schröder, C., Grulke, O., Klinger, T. and Naulin, V. 2004 Phys. Plasmas 11, 4249.CrossRefGoogle Scholar
Schröder, C., Grulke, O., Klinger, T. and Naulin, V. 2005 Phys. Plasmas 12, 042103.CrossRefGoogle Scholar
Shukla, K. P., Sorasio, G. and Stenflo, L. 2002 Phys. Rev. E 66, 067401.Google Scholar
Silveira, J. O., Ziebell, F. L., Gaeizer, R. and Yoon, H. P. 2002 Phys. Rev. E 65, 036407.Google Scholar
Vranjes, J. and Poedts, S. 2005 Phys. Plasmas 12, 064501.CrossRefGoogle Scholar
Vranjes, J. and Poedts, S. 2007 Phys. Plasmas 14, 112106.CrossRefGoogle Scholar
Vranjes, J., Sallem, I. and Poedts, S. 2004 Phys. Rev. E 69, 056404.Google Scholar
Wesson, J., 1997 Tokamaks, 2nd edn.Oxford: Clarendon Press, pp. 51, 394.Google Scholar
Xaplanteris, L. C. 1987 Astrophys. Space Sci. 136, 171.CrossRefGoogle Scholar