Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T19:07:23.387Z Has data issue: false hasContentIssue false

Arbitrary amplitude dust-acoustic solitons in a weakly non-ideal plasma with non-thermal ions

Published online by Cambridge University Press:  01 October 2007

S. K. MAHARAJ
Affiliation:
Hermanus Magnetic Observatory, Hermanus, 7200, South Africa
R. BHARUTHRAM
Affiliation:
University of the Witwatersrand, Johannesburg, South Africa ([email protected])
S. R. PILLAY
Affiliation:
University of KwaZulu-Natal, Durban, 4000, South Africa

Abstract

The nonlinear propagation of the dust-acoustic wave is investigated in a weakly non-ideal plasma comprising Boltzmann electrons, non-thermal ions characterized by a non-thermal parameter α and a negatively charged dust fluid. The non-ideal dust fluid is represented by the van der Waals equation of state. Arbitrary amplitude soliton solutions are found to occur for both supersonic and subsonic values of the Mach number. Upper and lower limits of the range of values of α for which solitons exist are examined as a function of the non-ideal parameters associated with the effects of volume reduction and the cohesive forces, for both the supersonic and subsonic cases.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amin, M. R., Morfill, G. E. and Shukla, P. K. 1998 Modulational instability of dust-acoustic and dust-ion-acoustic waves. Phys. Rev. E 58, 6517.Google Scholar
Asbridge, J. R., Bame, S. J. and Strong, I. B. 1968 Outward flow of protons from the Earth's bow shock. J. Geophys. Res. 73, 5777.Google Scholar
Barabash, S., Kallio, E., Lundlin, R. and Koskinen, H. 1995 Measurements of the nonthermal helium escape from Mars. J. Geophys. Res. 100, 21307.CrossRefGoogle Scholar
Barkan, A., Merlino, R. L. and D'Angelo, N,. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563.CrossRefGoogle Scholar
Bharuthram, R. and Rao, N. N. 1995 Self similar expansion of a warm dusty plasma-I. Unmagnetized case. Planet. Space Sci. 43, 1079.CrossRefGoogle Scholar
Bharuthram, R., Rao, N. N. and Pillay, S. R. 2001 Self-similar expansion of a non-ideal dusty plasma. IEEE Trans. Plasma Sci. 29, 164.CrossRefGoogle Scholar
Cairns, R. A., Mamun, A. A., Bingham, R., Boström, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Chu, H. and Lin, I. 1994 Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009.CrossRefGoogle ScholarPubMed
Divine, N. and Garrett, H. B. 1983 Charged particle distributions in Jupiter's magnetosphere. J. Geophys. Res. 88, 6889.CrossRefGoogle Scholar
Dovner, P. O., Eriksson, A. I., Boström, R. and Holback, B. 1994 Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21, 1827.CrossRefGoogle Scholar
Futaana, Y., Machida, S., Saito, Y., Matsuoka, A. and Hayakawa, H. 2003 Moonrelated nonthermal ions observed by Nozomi: Species, sources and generation mechanisms. J. Geophys. Res. 108 (A1), 1025, doi:10.1029/2002JA009366.Google Scholar
Ikezi, H. 1986 Coulomb solid of small particles in plasmas. Phys. Fluids 29, 764.CrossRefGoogle Scholar
Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Lanzerotti, L. J. and Gloeckler, G. 1983 General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: Results from the Voyager spacecraft. J. Geophys. Res. 88, 8871.CrossRefGoogle Scholar
Maharaj, S. K., Pillay, S. R., Bharuthram, R., Singh, S. V. and Lakhina, G. S. 2004 The effect of dust grain temperature and dust streaming on electrostatic solitary structures in a non-thermal plasma. Phys. Scripta T113, 135.CrossRefGoogle Scholar
Maharaj, S. K., Pillay, S. R., Bharuthram, R., Singh, S. V. and Lakhina, G. S. 2005 A parametric study of the influence of non-thermal ions on lineqr dust-acoustic waves in an unmagnetized dusty plasma. J. Plasma Phys. 71, 345.CrossRefGoogle Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves. Phys. Plasmas 3, 2610.CrossRefGoogle Scholar
Mendoza-Briceño, C. A., Russell, S. M. and Mamun, A. A. 2000 Large amplitude electrostatic solitary structures in a hot non-thermal dusty plasma. Planet. Space Sci. 48, 599.CrossRefGoogle Scholar
Nambu, M., Vladimirov, S. V. and Shukla, P. K. 1995 Attractive forces between charged particulates in plasmas. Phys. Lett. A 203, 40.CrossRefGoogle Scholar
Pillay, S. R., Rao, N. N. and Bharuthram, R. 2000 Linear and non-linear dust acoustic waves in non-ideal dusty plasmas with grain charge fluctuations. Waves in Dusty, Solar and Space Plasmas (ed. Verheest, F., Goossens, M., Hellberg, M. A. and Bharuthram, R.). New York: American Institute of Physics, 537, pp. 6875.Google Scholar
Pillay, S. R., Rao, N. N. and Bharuthram, R. 2002 Electrostatic dust modes in non-ideal dusty plasmas with grain charge fluctuations. Physica Scripta T98, 115.CrossRefGoogle Scholar
Prabhakara, H. R. and Tanna, V. L. 1996 Trapping of dust and dust acoustic waves in laboratory plasmas. Phys. Plasmas 3, 3176.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Rao, N. N. and Bharuthram, R. 1995 Self similar expansion of a warm dusty plasma-II. Magnetized case. Planet. Space Sci. 43, 1087.CrossRefGoogle Scholar
Rao, N. N. 1998a Linear and nonlinear dust-acoustic waves in non-ideal dusty plasmas. J. Plasma Phys. 59, 561.CrossRefGoogle Scholar
Rao, N. N. 1998b Dust-acoustic KDV solitons in weakly non-ideal dusty plasmas. Physica Scripta T75, 179.CrossRefGoogle Scholar
Rao, N. N. 1999 Dust-Coulomb waves in dense dusty plasmas. Phys. Plasmas 6, 4414.CrossRefGoogle Scholar
Rao, N. N. 2000 Dust-Coulomb and dust-acoustic wave propagation in dense dusty plasmas with high fugacity. Phys. Plasmas 7, 795.CrossRefGoogle Scholar
Shukla, P. K. 1994 Shielding of a slowly moving test charge in dusty plasma. Phys. Plasmas 1, 1362.CrossRefGoogle Scholar
Shukla, P. K. and Rao, N. N. 1996 Coulomb crystallization in colloidal plasmas with streaming ions and dust grains. Phys. Plasmas 3, 1770.CrossRefGoogle Scholar
Taniuti, T. and Nishihara, K. 1983 Nonlinear Waves. Pitman, London.Google Scholar
Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B. and Möhlmann, D. 1994 Plasma Crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652.CrossRefGoogle Scholar
Varma, R. K., Shukla, P. K. and Krishan, V. 1993 Electrostatic oscillations in the presence of grain charge perturbations in dusty plasmas. Phys. Rev. E 47, 3612.Google ScholarPubMed