Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:46:07.306Z Has data issue: false hasContentIssue false

Anomalous transport coefficients in a magnetized turbulent plasma

Published online by Cambridge University Press:  13 March 2009

Qiu Xiaoming
Affiliation:
Faculté des Sciences, C.P. 231, Association Euratom-Etat Belge, Université Libre de Bruxelles, Campus Plaine, 1050 Bruxelles
R. Balescu
Affiliation:
Faculté des Sciences, C.P. 231, Association Euratom-Etat Belge, Université Libre de Bruxelles, Campus Plaine, 1050 Bruxelles

Abstract

In this paper we generalize the formalism developed by Balescu and Paiva-Veretennicoff, valid for any kind of weak turbulence, for the determination of all the transport coefficients of an unmagnetized turbulent plasma, to the case of a magnetized one, and suggest a technique to avoid finding the inverse of the turbulent collision operator. The implicit plasmadynamical equations of a two-fluid plasma are presented by means of plasmadynamical variables. The anomalous transport coefficients appear in their natural places in these equations. It is shown that the necessary number of transport coefficients for describing macroscopically the magnetized turbulent plasma does not exceed the number for the unmagnetized one. The typical turbulent and gyromotion terms, representing dissipative effects peculiar to the magnetized system, which contribute to the frequency-dependent transport coefficients are clearly exhibited.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. & Paiva-Veretennicoff, I. 1978 J. Plasma Phys. 20, 231.CrossRefGoogle Scholar
Balescu, R. & Paiva-Veretennicoff, I. 1976 J. Plasma Phys. 16, 128.Google Scholar
Balescu, R. 1980 J. Plasma Phys. 24, 551.CrossRefGoogle Scholar
Balescu, R. 1981 J. Plasma Phys. 25, 43.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 1. Consultants Bureau.Google Scholar
Chapman, S. & Cowling, T. G. 1961 The Mathematical Theory of Non-Uniform Gases, 2nd edn.Cambridge University Press.Google Scholar
Chmieleski, R. M. & Ferziger, J. H. 1967 a Phys. Fluids, 10, 364.CrossRefGoogle Scholar
Chmieleski, R. M. & Ferziger, J. H. 1967 b Phys. Fluids, 10, 2520.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Dum, C. J. 1978 Phys. Fluids, 21, 945, 959.CrossRefGoogle Scholar
Faehl, R. J. & Kruer, W. L. 1977 Phys. Fluids, 20, 55.CrossRefGoogle Scholar
Galeev, A. A. & Sagdeev, R. Z. 1979 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 7. Consultants Bureau.Google Scholar
Manheimer, W. M., Colombant, D. & Flynn, R. 1976 Phys. Fluids, 19, 1354.CrossRefGoogle Scholar
Manheimer, W. M. 1977 Phys. Fluids, 20, 265.CrossRefGoogle Scholar
Pikel'ner, S. B. & Tsytovich, V. N. 1968 Soviet Phys. JETP, 55, 977.Google Scholar
Qiu, X. & Balescu, R. 1982 (To be published.)Google Scholar
Résibois, P. 1970 J. Stat. Phys. 2, 21.CrossRefGoogle Scholar
Tsytovich, V. N. 1971 Plasma Phys. 13, 100.CrossRefGoogle Scholar
Vasu, G. 1976 a J. Plasma Phys. 16, 289.CrossRefGoogle Scholar
Vasu, G. 1976 b J. Plasma Phys. 16, 299.CrossRefGoogle Scholar
Vedenov, A. A. & Ryutov, D. D. 1975 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 6. Consultants Bureau.Google Scholar
Vekshtein, G. E., Ryutov, D. D. & Sagdeev, R. Z. 1970 JETP Lett. 12, 291.Google Scholar